

Résidus de produits phytosanitaires et de leurs métabolites dans les eaux souterraines

Séances d'informations phytosanitaires février 2015

Devenir du produit

Plus la solubilité est grande, plus la substance va être entraînée par l'eau de ruissellement

Plus la durée de vie est longue plus l'effet sur les organismes du sols est persistant et plus le risque d'être lessivé dure. Plus la LC/LD/EC est basse plus la substance est toxique.

TRENDS in Plant Science

Devenir du produit

	Persistant (DT 50 élevé)	Moyen (DT 50 moyen)	Non persistant (DT 50 faible)
Adsorption faible (Koc faible)	Risque élevé eau de surface + souterraine	Risque moyen eau de surface	Risque faible eau de surface
Adsorption moyenne (Koc moyen)	Risque moyen eau de surface + souterraine	Risque moyen eau de surface	Risque moyen eau de surface
Adsorption forte (Koc fort)	Risque faible	Risque faible	Risque faible

- •Un dosage élevé et une forte solubilité augmentent le risque de retrouver la molécule dans l'eau.
- •Le type et les caractéristiques du sol (pH) peuvent fortement influencer les différents paramètres (adsorpsion, persistance, ...)
- •Les pollutions provenant du remplissage, du lavage ou de la dérive viennent en complément au lessivage par le sol

Devenir du produit

	Persistant (DT 50 élevé)	Moyen (DT 50 moyen)	Non persistant (DT 50 faible)
Adsorption faible (Koc faible)			
Adsorption moyenne (Koc moyen)			
Adsorption forte (Koc fort)			

- •Un dosage élevé et une forte solubilité augmentent le risque de retrouver la molécule dans l'eau.
- •Le type et les caractéristiques du sol (pH) peuvent fortement influencer les différents paramètres (adsorpsion, persistance, ...)
- •Les pollutions provenant du remplissage, du lavage ou de la dérive viennent en complément au lessivage par le sol

matière active 1:	ere active 1: matière active 3:				
PHENMÉDIPHAME produit commercial dose de base I ou kg/ha Beetup 1 St Betam LG 1 LG Betaren 1 Bu Phenmedipham 1 Sa, Sc, Md matière active 2: ETHOFUMÉSATE Plus de produit simple à disposition sur le marché.	MÉTRAMITRONE produit commercial Beta Omya Betavel Bettix WG/SC Goltix Compact Goltix WG 70 Metamit 70 WG Metamitron Sugaro Gamma	dose de base l ou kg/ha 1 Om 1 Bu 1 St 0,8 Ba, LG 1 LG 1 Amreco 1 Sc, Md, Sa 1 Sy	CHLORIDAZONE R Interdit en zone S2 produit commercial Chloridazon Jumper WG Pyramin DF Ravel Fluid		

Autres produits	Matière active
Début	Triflusulfuron
Lontrel	Clopyralide
Dual Gold	Métolachlore
Frontier X2	Diméthénamide
Venzar	Lenacil

	Persistant	Moyen	Non persistant
Adsorption faible		Clopyralide (Lontrel,)	Triflusulfuron (Début,)
Adsorption moyenne		Métamitrone (Goltix,) Chloridazone (Pyramin,) Ethofumésate (Betanal,) Métolachlore (Dual Gold,) Lénacile (Venzar,)	Diméthénamide (Frontier,)
Adsorption forte			Phenmédiphame (Div.,) Desmédiphame (Div.,)

	Persistant	Moyen	Non persistant
Ad. Faible	Mét 1 Chloridazone Mét 1 Métolachlore	Mét. Diméthénamide (Frontier)	Mét 2 Lénacile
Ad. Moyenne	Mét 2 Chloridazone Mét 2 Métolachlore Mét Desmédiphame	Mét. Métamitrone Mét 1 et 2 Phenmédiphame	
Ad. forte		Mét 1 Lénacile (Venzar)	

Canton de Carte de Ca

Devenir du produit

	Persistant	Moyen	Non persistant
Adsorp tion faible		Chlorothalonile (div)	Dimethachlore (Brazan trio)
Adsorp tion moyen ne		Atrazine (Gesaprim,) Métamitrone (Goltix,) Chloridazone (Pyramin,) Métolachlore (Dual gold,) Métazachlore (Colzor Trio,) Terbuthylazine (Aspect,) Diclobénil (granulés rumex)	Bentazone (Basagran,) 2,4-D et MCPA Mecoprop (Orkan,) Diméthénamide (Frontier,) Chlortoluron (Banaril,) Isoproturon (divers)
Adsorp tion forte			Bromoxynil (Dinitrex,)

Devenir des métabolites

	Persistant	Moyen	Non persistant
Adsor ption faible	Mét 1 Chloridazone Mét 1 Métolachlore Mét. 2 Métazachlore Met 1 Diclobénil Mét 2 Chlorot.	Mét. Diméthénamide Mét. 1 Métazachlore	
Adsor ption moyen ne	Mét 2 Chloridazone Mét 2 Métolachlore Mét 2 Terbuthylazine Mét 1 et 3 Chlorot.	Mét 1 et 2 Atrazine Mét. Métamitrone Mét Chlortoluron Mét Isoproturon	Mét 1 Terbuthylazine
Adsor ption forte		Mét MCPA et Mecoprop	Mét 1et 2 2.4-D Mét. 1 et 2 Dimethachlore

Devenir des substances

	Persistant	Moyen	Non persistant
Adsorption faible	Risque él de s' sc	polites	Diague faible cou
Adsorption moyenne	Ri. de s. scuterra.		nces actives
Adsorption forte	Ri		

En plus des caractéristiques des substances la fréquence d'utilisation et la solubilité semblent très importantes.

Le sol est un milieu complexe, les interactions sont difficilement prévisibles.

	Persistant	Moyen	Non persistant
Ad. Faible	Mét 1 Chloridazone Mét 1 Métolachlore	Mét. Diméthénamide (Frontier)	Mét 2 Lénacile
Ad. Moyenne	Mét 2 Chloridazone Mét 2 Métolachlore Mét Desmédiphame	Mét. Métamitrone Mét 1 et 2 Phenmédiphame	
Ad. forte		Mét 1 Lénacile (Venzar)	

Conclusions:

- Préférer Métamitrone à Chloridazone particulièrement en S3 et Zu
- Utilisation raisonnée de l'Ethofumésate et de la Métamitrone (diminuer les doses avec si nécessaire augmentation des fréquences, ...)
- Diméthénamide (Frontier) à préférer à Métolachlore (Dual Gold)
- Cas spécifiques: utilisation de Lénacile (dose réduite) ou de Triflusulfuron (Début) à la place de la Chloridazone
- Sarclage ?

CBS-LIZ-Herbicide 2014 CH

Questions / aide tél.: 021 557 99 09

Conseil actuel Prix				Sauvegarder le conseil	Ouvrir le conseil	Terminer
Adventices/Stade de		Conditions a	ctuelles		Information	
Adventices présentes (1-5)= urge Amarante (5) Colza (tôt) (3) Mercuriale annuelle (4)	1-2 feuilles nce de la lutte Prélevée cotyl. 1-2 feuilles Info Info	Couverture nuageuse Gel Humidité	48 h avant application couvert aucun nomale	Couverture nuageuse Gel Temp. max. jour	48 h après appli couvert aucun née 11-20°C	cation
Graminées (1-5)= urgence de la		Moment du trait	acinaire du sol (argile-humus), pH ement	nomale aucun nomale soir 2e postlevée	our < 15°C	
Conseil: I, kg/ha auj	ourd'hui	Application en p	s faible Sensibilité	e des plantes	élevée	
+ sans CHLORIDAZON 650 •			us tôt 7 jours après le trai	W 200 200 200 2	10, to	
+ METAMITRON 700	0,30 0,90	The second second	applic. supplémentaire ne MÉTAMITRONE (incl. CHL	Haridan Str. W. State Wall	1618 - 1- 242 - 2-2	ne
+ Debut incl. Exell	0,022		à Venzar ou Dual/Frontier		Mer emphasize to	
+ Venzar + Dual/Frontier	0,07 0,11		http://wv	vw.zuckerr	uebe.ch	
Coûts des produits CHF/ha 160		Tenir compte de l'autorisation!				

	Persistant	Moyen	Non persistant
Ad. Faible			Nicosulfuron (Dasul,)
Ad. Moyenne		Terbuthylazine (Aspect,) Métolachlore (Dual Gold,) Flufenacet (Aspect,) Mésotrione (Callisto,)	Diméthénamide (Frontier,) Pethoxamide (Successor T)
Ad. forte			

	Persistant	Moyen	Non persistant
Ad. Faible	Mét 1 Métolachlore Mét 1 Flufenacet Mét 1 Nicosulfuron	Mét. Diméthénamide Mét 2 Nicosulfuron Mét Pethoxamide	Nicosulfuron (Dasul,) Mét 2 Flufenacet Mét 1 Mésotrione
Ad. Moyenne	Mét 2 Métolachlore Mét 2 Terbuthylazine	Terbuthylazine (Aspect,) Métolachlore (Dual Gold,) Flufenacet (Aspect,) Mésotrione (Callisto,)	Diméthénamide (Frontier,) Pethoxamide (Successor T) Mét 1 Terbuthylazine Mét 2 Mésotrione
Ad. forte			

	Persistant	Moyen	Non persistant
Ad. Faible	Mét 1 Métolachlore Mét 1 Flufenacet (Aspect) Mét 1 Nicosulfuron (Dasul)	Mét. Diméthénamide (Frontier) Mét 2 Nicosulfuron Mét Pethoxamide (Successor T)	Mét 2 Flufenacet Mét 1 Mésotrione (Callisto)
Ad. Moyenne	Mét 2 Métolachlore Mét 2 Terbuthylazine		Mét 1 Terbuthylazine Mét 2 Mésotrione
Ad. forte			

Conclusions:

- Eviter herbicides racinaires (Terbuthylazine, Métolachlore, ...) et préférer désherbage avec tricétones ou sulfonylurées.
- Sarclage?

	Persistant	Moyen	Non persistant					
Ad. Faible	Mét 2 Chlorot. Mét 1 Flufenacet	Clopyralide (Ariane C) Chlorothalonile (div)	Métribuzine (Artist,) Mét 2 Flufenacet <i>Mét 1 Fuoxapyroxad</i>					
Ad. Moyenne	Mét 1 et 3 Chlorot. Mét 2 Terbut.	Flufenacet (Hérold,) Mét Chlortoluron Mét Isoproturon Mét 1 Fuoxapyroxad	Chlortoluron (Banaril,) Isoproturon (divers) 2,4-D MCPA Mecoprop (Orkan,) Mét 1 et 2 Métribuzine					
Ad. forte	Bixafen (Aviator) Boscalide (Bell,) Fuoxapyroxad (Adexar)	Mét MCPA et Mecoprop	Prothioconazole (Proline,) Mét 1 et 2 2,4-D Mét 1 et 2 prothioconazole					

- •Eviter l'utilisation du chlorothalonil en préférant le prothioconazole (grillures de l'orge) ou les carboxamide (Bell ou Aviator Xpro) pour une stratégie antirésistance
- •Remplacer les herbicides racinaires par des foliaires (▲risque résistance).
- •Extenso ou culture sans herbicide?

	Persistant	Moyen	Non persistant
Ad. Faible		Clopyralide (Ariane C) Chlorothalonile (div)	Métribuzine (Artist,)
Ad. Moyenne		Flufenacet (Hérold,)	Chlortoluron (Banaril,) Isoproturon (divers) 2,4-D MCPA Mecoprop (Orkan,)
Ad. forte	Pendimethaline (Banaril,) Bixafen (Aviator) Fuoxapyroxad (Adexar)		Prothioconazole (Proline,)

	Persistant	Moyen	Non persistant
Ad. Faible	Mét 2 Chlorot. Mét 1 Flufenacet (Herold)		Mét 2 Flufenacet Mét 1 Fuoxapyroxad (Adexar)
Ad. Moyenne	Mét 1 et 3 Chlorot.	Mét Chlortoluron (Banaril) Mét Isoproturon Mét 1 Fuoxapyroxad	Mét 1 et 2 Métribuzine
Ad. forte		Mét MCPA et Mecoprop	Mét 1 et 2 2,4-D Mét 1 et 2 prothioconazole

Conclusions:

- •Fongicides: Eviter l'utilisation du **chlorothalonil** en préférant le prothioconazole (grillures de l'orge) ou, dans le blé, les SDHI (Bell, Aviator Xpro ou Adexar) pour une stratégie anti-résistance
- •Herbicides: remplacer les herbicides racinaires par des foliaires (▲ risque résistance).
- •Préférer l'extenso ou la culture sans herbicide

Colza

	Persistant	Moyen	Non persistant						
Ad. Faible	Mét. 2 Métazachlore	Clopyralide (Effigo) Mét. 1 Métazachlore Mét Pethoxamide	Dimethachlore (Brasan,)						
Ad. Moyenne		Métazachlore (Nimbus,) Clomazone (Devrinol,)	Pethoxamide (Rodino,) Mét Napropamide						
Ad. forte		Napropamide (Devrinol,) Propyzamide (Kerb,) Mét 1 Propyzamide	Mét 1 et 2 dimethachlore Mét 2 Propyzamide						

Tournesol

	Persistant	Moyen	Non persistant
Ad. Faible	Mét 1 Métolachlore	Mét. Diméthénamide	
Ad. Moyenne	Mét 2 Métolachlore	Linuron (div.) Mét linuron	Métolachlore Diméthénamide
Ad. forte	Aclonifen (Bandur)		

Pommes de terre: désherbage

	Persistant	Moyen	Non persistant
Ad. Faible	Mét 1 Flufenacet		Métribuzine (Artist,)
Ad. Moyenne		Flufenacet (Artist,) Clomazone (Centium,) Linuron (div.) Mét linuron	Mét 1 et 2 Métribuzine Mét prosulfocarbe
Ad. forte	Aclonifen (Bandur)		Prosulfocarbe (Boxer,)

Pommes de terre: fongicides

	Persistant	Moyen	Non persistant				
Ad. Faible	Mét 2 Chlorot.						
Ad. Moyenne	Mét 1 et 3 Chlorot. Fluopicolide (Infinito) Mét 2 Fluopicolide		Mét 1 à 3 Mancozèbe Mét 1 et 3 Zoxamide Mét 1 Fluopicolide Mét mandipropamide				
Ad. forte	Mét 3 Cyazofamide Mét fluaziname	Zoxamide (Electis,) Propamocarbe (Consento,) Mandipropamide (Revus,)	Mancozèbe (div.) Cyazofamide (Ranman,) Fluaziname (Mapro,) Mét 1 et 2 Cyazofamide Mét 2 zoxamide				

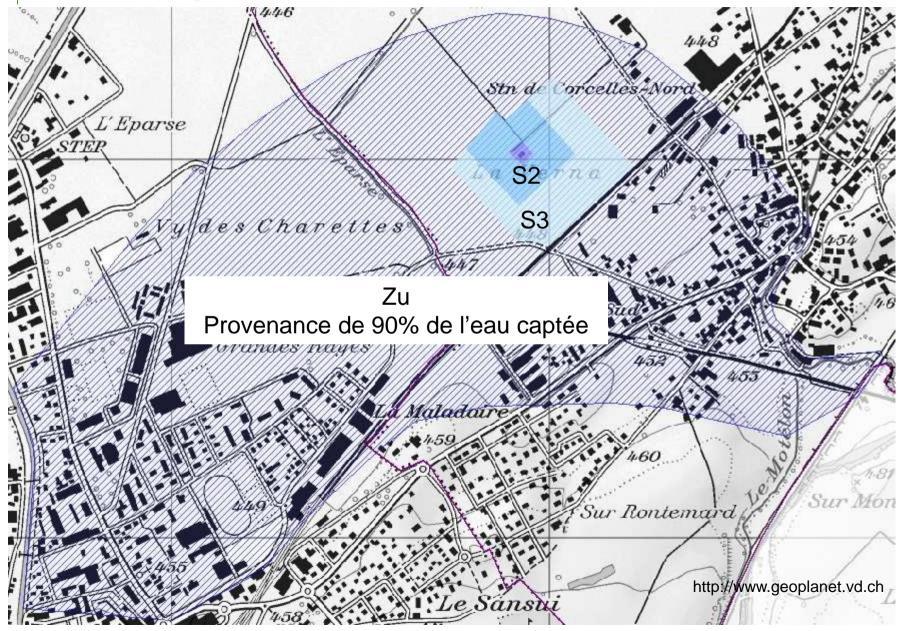
Pommes de terre: fongicides

	Persistant	Moyen	Non persistant
Ad. Faible	Mét 2 Chlorot.		
Ad. Moyenne	Mét 1 et 3 Chlorot. Mét 2 Fluopicolide (Infinito)		Mét 1 à 3 Mancozèbe Mét 1 et 3 Zoxamide Mét 1 Fluopicolide Mét Mandipropamide (Revus)
Ad. forte	Mét 3 Cyazofamide (Ranman) Mét Fluaziname (Mapro)		Mét 1 et 2 Cyazofamide Mét 2 Zoxamide (Electis)

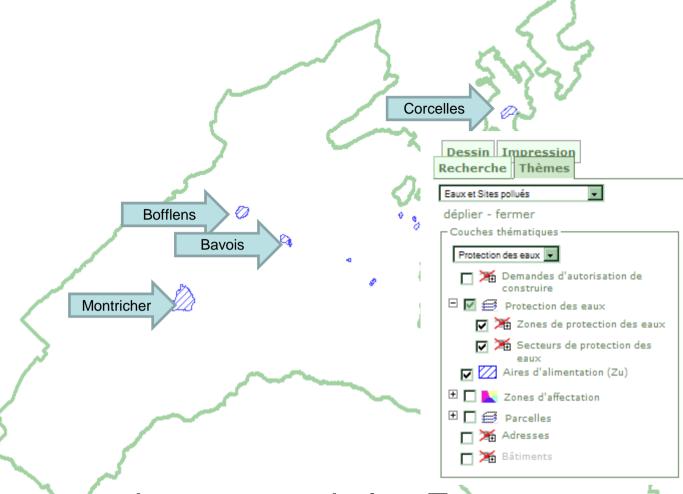
Conclusions:

- •Eviter l'utilisation du chlorothalonil en préférant le mancozèbe ou les autres contacts sporicides (▲ risque alternariose avec cyazofamide et fluaziname).
- •Respect des restrictions d'utilisation (nbre applications, distances minimales, délais d'attente)
- •Eviter le contact directe avec les feuilles traitées (production de plants)

Remarques et utilisation		Pénètre dans la cuticule.	0-20	Pénètre dans la cuticule.	Pénètre dans la cuticule. N'utiliser qu'en fin de saison. Freine la croissance en début de végétation. Maximum 4 kg/ha de cuivre métal par an. (Le cuivre s'accumule dans le sol!)						Amistar, ajouter un contact contenant du RUAZINAM ou du CHLOROTHALGNIL.							Translaminaire uniquement. Ajouter un contact efficace contre l'alternariose.	C. C		Forum est également miscible avec Ranman de LG.						Appliquer avant le début de la floraison.	Pas sur plants ni sur pommes de terre sous plastique.				
wem.	нашае	m	8	m	- 5	1	5	` `	` `	7	\$	5	>	m	m	4	>	j	>	mm	4	m	4	5	•	4	9	,	m	m	N	2 2
	sevibreT	2	2	2 3	m	2 3	2 3	3	m 2	_	1 2	2 3	3 3		2 2	m +	2 3	-	2 2			1 3	1 2		_	2 3						n m
sconame.		0		‡	‡	‡	‡	‡	‡	\rightarrow	‡ ‡	‡	+	‡	‡	‡	+	+	+ .		+	. 0	#	-				‡	‡	‡	-	‡ ‡
seicules	duī	‡	‡	‡	0	0		0	0	-	0	0	0		0	T.	0	0	0 0	0 0	0	‡	++	2	t	‡	+	‡	‡	‡	_	6
ez bonzes gr	llev no M	0		0	0	0	0	0	0		0 0	0	0	0	0		0	0	0 0	, 0	0	+	+	+		‡		‡	‡	‡	‡	‡ ‡
səllin	94	‡	‡	‡	‡	‡	#	#	‡		‡ ‡	‡	++	+	+		*	(+)	‡ :	‡ ‡	+	‡	‡			‡	‡	‡	‡	#	‡	# #
us sonstai (siulq mm) st	evizzal	[20]	[40]	[40]	[30]	[20]	[20]	[20]	[20]	101	[20]	[20]	[20]	[40]	40	[40]	[20]		201	[20]	[20]	8	8	[8]	3	8	8	8	8	8	8	8 8
sauods sa	Sur le	9 1		9 +	0	0		0	0		0	0		0	0	0	9 (+)+	10000	(+)+ (+)+	Q(+)+	⊕ (+)+	9 ±	0 +	0(1)		0+++	0 :	0(+)+	(+) +(+)	9 (+)+	-	D ‡
Ation Ation & Ation & Ation	inof	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	1 3 2 +		1 2 2 +		P4	+	-	+	-	1 à 2 +	m	Ŧ	7	+	•	3 à 4
evi înevêri O	5	7 à 10	7 à 10	7 à 10	7 à 9	789	7 à 8	7 à 8	7 à 8		00 00 /1 /	7 à 8	7 à 8	7 à 10	7 à 10	7 à 10	7 à 8		7 3 8	9	-	7 à 10	7 à 10	73.10	ū	200		7 à 10	7 à 10	7 à 10	10 à 12	10 a 12
Eros xin erl\. H ibno	q one	-	40 à 50	_	45 à 55	9		130 100 a 125 75 100	45 125 105 à	011	S + 3	30	_	70 a	-	m	255	20	2 23	88		05	_	80 a 85	120	75	ां	_	. 1		- 1	70 à 27
Toxicité		Xn 🌖	N.,	X CAN	Xn 🎶	李二	Xu Sv	17	X ↓ VX		× × × × × × × × × × × × × × × × × × ×	***	X OF	*	***	*	Xn 🗫	<20>	₹	****	X SM	X OH	X	×v €	Xn	3(5)	4	₹ uX	¥.×	***	₹ ux	49×4€ ×
ey/no f	ķi	X 50		1,8 x	×	4	in In	5 X 3 X 3,5	m 1		n mmum		×	75	52	5'0	Z	2,4	×× mm		,25 + X	X 9'0	Z,5 X	2,5 X	+4	1,6		200	× 2			2,5 Xi
žiuborq ab e	goog	9	m ,tu				1000	-	\$ \$ \$ \$ \$ \$	E	Diverses Om Bu Fe	Diverses	_	Х.»	-	2.5	-13		Bu Sa		0	Sy C	54	57.75	1 57	Ba		-	E	St.		5t 2,
F		441	SF CK	0	Ba Ba Sy Sy St LG	7	H		57 Pi	0	Ec Dive	Dive	7	E &	i i	57, LG,	7	V1	VG S	44 0		- MI	5	B.	a—153	- 40	~1	0	Ba,	×1	-	57
Produit commercial		Ranman Top	Mapro, Shirlan Ibiza SC, Zignal	Electis	Miros FL Bravo 500 Chlorothalonii Funaben Daconii 500 Rover	Rover Star	Cupravit bleu Boullie bordelaise RSR	Funguran Flow Kocide DF, Micropert Kocide 2000 Kocide Opti	Flowbrix, Cuprofix fit Cuprofix Cuivre 50 Oxycuivre 50	Vitigran 50	Mancozebe Policar 75 WG NeoTec Mancoflo Trimanoc DG	Manèbe	Polyram DF	Amistar, Ortiva	1	Bogard, SIICK, 3100, Difeor 250 EC, Divo	Daconil Combi DF Rover Combi	Missell	Megapur Duo Mancozèbe Combi V	Zetanil Combi Curzate M WG	Cymoxanil WG + Mancozèbe 75 WG	Revus	Revus MZ	Acrobat MZ	Forum + Rover Star	Infinito	Proxanil		Consento, Arkaban	Valbon	Epodne	rantic M Ridomil Gold
Apport de matière active o/ha		80	250	155 +1188	1500	800+1100	3500	1500 1600 à 2000 1050 1500	1140	diam'r.	2400 2250 2275 2275	2400	2100	187	125	125	120 + 1200	120 ÷ 900	120 + 1998	120+1400	113+1725	150	125 + 1500	188 + 1668	150+800+	100 + 1000	1000+125	938 + 938	750 + 150	28+1120		100 + 1626
MATIÈRE ACTIVE		CYAZOFAMIDE	FLUAZINAME	ZOXAMIDE + MANCOZÈBE	CHLOROTHALONIL	CHLOROTHALONIL + MANCOZÈBE	HYDROXYDE DE CUIVRE CHLOROCALCIQUE	HYDROXYDE DE CUIVRE	OXYCHLORURE DE CUIVRE		MANCOZÉBE	MANÉBE	MÉTIRAME	AZOXYSTROBINE	TRIFLOXYSTROBINE	DIFENDCONAZOLE	CYMOXANIL + CHLOROTHALONIL		CONTROL - MANICOTED	THE PROPERTY OF THE PROPERTY O	CYMOXANIL + MANCOZÉBE	MANDIPROPAMIDE	MANDIPROPAMIDE + MANCOZÈBE	DIIMETHOMORPHE + MANCOZÈBE	DIMETHOMORPHE + CHLOROTHALONIL + MANCOZÉBE	FLUOPICOUDE + PROPAMOCARBE	PROFAMOCARBE + CYMOXANIL	PROPAMOCARBE + CHLOROTHALONIL	PROPAMOCARBE + FENAMIDONE	BENTHIAVALICARBE + MANCOZEBE	ALA	BENALAXYL M + MANCOZEBE METALAXYL-M + MANCOZEBE
ab aquor aonatsis	9 9	21	29	Z2 + M	Σ	Σ		Σ	50.700		Σ	**	2	11		m	27 + M		27 . 84		27 + M	40	M+04	MITOR	+ 10	43 + 28	27 + 28	28 + M			4+29	4 + W
FONGICIDES	TYPE	SI	VTAC PORI-			CONTACTS															SAST											



Conséquences pour la pratique


- Atrazine, simazine: interdits
- Diclobénil: remplacer par Ally Tabs
- Respecter absolument les limitations d'homologation (zones S2, kg/an, distances minimales)
- Produits interdit en S2 (p. ex. Bentazone): utilisation modérée également en S3 et Zu

Respecter les zones S et Zu

Les sources sont nombreuses mais les Zu ne sont pas toujours délimitées. S'informer auprès de la commune ou sur Geoplanet.

Conséquences pour la pratique

- Atrazine, simazine: interdits
- Dichlobénil: remplacer par Ally Tabs
- Respecter absolument les limitations d'homologation (zones S2, kg/an, distances minimales)
- Produits interdit en S2 (p. ex. Bentazone): utilisation modérée également en S3 et Zu
- Présence également de clothianidine ou thiametoxame: limiter l'utilisation de semences traitées
- Herbicides racinaires plus concernés que herbicides foliaires?

Respecter les bonnes pratiques

- Eviter les pollutions lors du remplissage
- Eviter la dérive, distances de sécurité
- Vider le fond de cuve de manière diluée au champ (calculer précisément)
- Lutter contre l'érosion
- Bandes herbeuses
- Traiter selon les seuils avec des dosages adaptés (en part. herbicides racinaires)