Catalogue d'éléments de construction avec calcul de la valeur *U*Construction neuve

Le coefficient de transmission thermique U – plus simplement nommé valeur U et auparavant valeur k – est l'un des paramètres les plus importants du calcul de l'isolation thermique des bâtiments. La valeur U est essentiellement utilisée dans l'évaluation de la qualité de l'isolation thermique d'un élément de construction. Il occupe une place importante dans les normes et les prescriptions cantonales sur l'isolation thermique.

Editeur:

Office fédéral de l'énergie OFEN

Auteurs:

Kurt Marti, bureau d'ingénieurs pour l'énergie et l'environnement, 3054 Schüpfen

Traduction:

Christophe Mercier, architecte EPFZ-SIA, 1066 Epalinges

Maquette et illustrations:

Sepp Steibli, Education Design, 3000 Berne

Copyright:

Office fédéral de l'énergie, 2002

Diffusion:

Office fédéral des constructions et de la logistique OFCL / BBL BBL, Vertrieb Publikationen, 3003 Bern, www.bbl.admin.ch/bundespublikationen: 805.150 f / 8.02 / 1000

Introduction

La présente publication remplace celle de 1989. En raison de l'augmentation des épaisseurs d'isolation thermique, en particulier dans le domaine du standard MINERGIE, des lacunes sont apparues dans le catalogue des éléments de construction. D'autre part, certaines normes et recommandations ont subi des modifications, justifiant une révision. L'augmentation de l'épaisseur de l'isolation thermique a pour conséquence une incidence plus marquée des ponts thermiques. Le chapitre 2.4 en tient compte. La publication «Catalogue des ponts thermiques» indique des majorations concrètes.

Le Catalogue des éléments de construction s'adresse aux professionnels de la construction et de la technique du bâtiment, ainsi qu'aux organes chargés d'appliquer les lois cantonales sur l'énergie et de contrôler la bienfacture des mesures énergétiques mises en œuvre. Toutefois, il ne se rapporte qu'à des éléments de constructions neuves. Lorsqu'il s'agit d'assainir des éléments existants, on utilisera la publication actualisée «Catalogue d'éléments de construction avec calcul de la valeur *U* – Assainissement».

Dans la partie générale, on s'attache à définir la valeur *U* et à montrer quels sont les facteurs qui peuvent l'influencer. Cette partie donne également un aperçu de la méthode que l'on applique pour déterminer la valeur *U* des éléments neufs.

Le chapitre suivant présente au lecteur les principes et la méthode de calcul de la valeur *U*, puis démontre, à l'aide de divers exemples et exercices, comment la déterminer. Le chapitre intitulé «Catalogue d'éléments de construction» est un ouvrage de référence contenant les éléments rencontrés le plus fréquemment dans la pratique ; il permet aux utilisateurs de déterminer ou de contrôler la valeur *U* d'un élément sans devoir recourir au calcul.

Des indications concernant les fenêtres et les portes y ont aussi été intégrées. Ce chapitre remplace la Fiche technique «Valeurs k et valeurs g des fenêtres» de l'Office fédéral de l'énergie.

On trouvera à la fin de la publication les aides complémentaires suivantes:

- Tableau A: Calcul des valeurs U
- Tableau B: Détermination des valeurs *U* à l'aide du Catalogue d'éléments de construction
- Tableau Aw: Calcul des valeurs *U* des fenêtres Ils peuvent être reproduits et remis à titre de justificatif aux autorités compétentes.

Les publications suivantes ont servi à l'élaboration du Catalogue d'éléments de construction :

Norme SN EN ISO 7345 SIA 180.051	Isolation thermique – Grandeurs physiques et définitions	1995
Norme SN EN ISO 6946 SIA 180.071	Composants et parois de bâtiments – Résistance thermique et coefficient de transmission thermique – Méthode de calcul	1006
	ivietriode de Calcui	1990
Norme SIA 180	Isolation thermique et protection contre l'humidité dans les bâtiments	1999
Prénorme SIA 279	Isolants thermiques	2000
CSFF / SZFF doc. 31.03	Protection thermique et protection contre le soleil des fenêtres et éléments de fenêtre	
Norme SIA 380/1	L'énergie thermique dans le bâtiment	2001
Documentation SIA D0170	L'énergie thermique dans le bâtiment	2001
Cahier technique SIA 2001	Isolants thermiques	2001
Office fédéral de l'énergie	Calcul de la valeur k et catalogue d'éléments de construction – Construction neuve	1989
Office fédéral de l'énergie	Valeurs k et valeurs g des fenêtres	1995
Office fédéral de l'énergie	Prise en compte des ponts thermiques pour le justificatif de l'isolation	1995
Office fédéral de l'énergie	Catalogue d'éléments de construction avec de la valeur U – Assainissement	
Office fédéral de l'énergie	Catalogue des ponts thermiques	2003

■ Table des matières

1	Généralités et méthode	7
1.1	Standard MINERGIE	8
1.2	Isolation thermique transparente (ITT)	8
2	Calcul de la valeur <i>U</i>	9
	Eléments homogènes	
2.2	Eléments inhomogènes	10
	Valeurs de calcul	
2.3.1	Coefficients de transfert de chaleur surfacique h	11
2.3.2	Conductivité thermique λ des matériaux	11
2.3.3	Résistance thermique R _g des lames d'air	14
2.4	Ponts thermiques	14
2.5	Indications spéciales	15
2.6	Exemples	16
2.7	Exercice	19
3	Détermination de la valeur <i>U</i>	
	à l'aide du Catalogue d'éléments de construction	21
	Exemple	22
		22
3.2	Exemple	22 23
3.2 4	Exemple Exercices Catalogue d'éléments de construction avec calcul de la valeur <i>U</i>	22 23 25
3.2 4 4.1	Exemple Exercices Catalogue d'éléments de construction avec calcul de la valeur <i>U</i> Eléments homogènes	22 23 25 26
3.2 4 4.1	Exemple Exercices Catalogue d'éléments de construction avec calcul de la valeur <i>U</i>	22 23 25 26
3.2 4 4.1 4.2	Exemple Exercices Catalogue d'éléments de construction avec calcul de la valeur U Eléments homogènes Eléments inhomogènes	22 23 25 26 56
3.2 4 4.1 4.2 5	Exemple Exercices Catalogue d'éléments de construction avec calcul de la valeur U Eléments homogènes Eléments inhomogènes Fenêtres et portes	22 23 25 26 56
3.2 4 4.1 4.2 5 5.1	Exemple Exercices Catalogue d'éléments de construction avec calcul de la valeur U Eléments homogènes Eléments inhomogènes	22 23 25 26 56
3.2 4 4.1 4.2 5 5.1	Exemple Exercices Catalogue d'éléments de construction avec calcul de la valeur U Eléments homogènes Eléments inhomogènes Fenêtres et portes Fenêtres	22 23 25 26 56
3.2 4 4.1 4.2 5 5.1	Exemple Exercices Catalogue d'éléments de construction avec calcul de la valeur U Eléments homogènes Eléments inhomogènes Fenêtres et portes Fortes Annexes	22 23 25 26 56 65 66 69
3.2 4 4.1 4.2 5 5.1	Exemple Exercices Catalogue d'éléments de construction avec calcul de la valeur U Eléments homogènes Eléments inhomogènes Fenêtres et portes Fortes Portes	22 23 25 26 56 65 66 69
3.2 4 4.1 4.2 5 5.1	Exemple Exercices Catalogue d'éléments de construction avec calcul de la valeur U Eléments homogènes Eléments inhomogènes Fenêtres et portes Fortes Annexes	22 23 25 26 56 65 66 69 71
3.2 4 4.1 4.2 5 5.1	Exemple Exercices. Catalogue d'éléments de construction avec calcul de la valeur U Eléments homogènes Eléments inhomogènes Fenêtres et portes Fenêtres Portes Annexes Tableau A (formulaire pour le calcul de la valeur U)	22 23 25 26 56 65 69 71 72 73

1 Généralités et méthode

La chaleur est une forme d'énergie. Son flux est toujours dirigé des températures les plus élevées vers les températures les plus basses. Des éléments tels que planchers, parois, dalles, toits, fenêtres et portes opposent une certaine résistance aux échanges thermiques. Le flux de chaleur qui traverse un élément est défini par le coefficient de transmission thermique *U* (valeur *U*).

La valeur *U* est le quotient de la densité de flux thermique qui traverse, en régime stationnaire, l'élément de construction considéré, par la différence de température entre les deux ambiances contiguës à cet élément. Le coefficient de transmission thermique d'un élément est l'inverse de sa résistance totale.

L'unité physique de la valeur *U* est le Watt par mètre carré et degré Kelvin:

 $W/(m^2 \cdot K)$.

Les phénomènes suivants influencent la valeur *U* d'un élément:

■ transmission de chaleur entre l'air intérieur et l'élément.

Ce processus est décrit par le coefficient de transfert de chaleur surfacique intérieur h_i (chap. 2.3.1).

- **conduction de chaleur à l'intérieur d'un élément.** Le paramètre déterminant est ici la conductivité thermique λ (lambda) des différents matériaux (chap. 2.3.2).
- transmission de chaleur entre l'élément et l'air extérieur

Ce processus est décrit par le coefficient de transfert de chaleur surfacique extérieur h_e (chap. 2.3.1).

On peut formuler la règle suivante:

Plus la valeur U est petite, meilleure est l'isolation thermique.

Lorsque la valeur *U* diminue, les besoins d'énergie pour le chauffage baissent proportionnellement et les températures superficielles augmentent. Il en résulte une amélioration du confort de l'habitat et une réduction des risques de condensation à la surface des éléments, phénomène qui se traduit par l'apparition de taches grisâtres, de champignons et d'odeurs de moisi caractéristiques.

La Norme SIA 180 «Isolation thermique et protection contre l'humidité dans les bâtiments» présente des valeurs maximales pour les coefficients de transmission thermique, du point de vue du confort et de la protection contre l'humidité.

La Norme SIA 380/1 «L'énergie thermique dans le bâtiment» présente des valeurs-limites et des valeurs-cibles pour les coefficients de transmission thermique d'éléments plans.

Ces normes ainsi que les prescriptions cantonales sur l'isolation thermique précisent les limites supérieures admissibles des valeurs *U*.

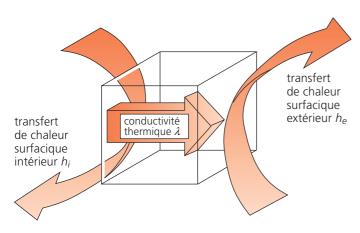


Fig. 1
Le transfert
surfacique (h) et
la conductivité
thermique (λ)
influencent la
valeur U d'un
élément

8 1.1 Standard MINERGIE

Le standard MINERGIE s'impose de plus en plus. De viser consciemment des objectifs tels que «confort», «santé», «absence de dégâts», «efficacité énergétique» et «rentabilité» a pour conséquence, en plus d'une technique du bâtiment optimale et d'une enveloppe étanche, que les

éléments sont nettement mieux isolés. En respectant le standard MINERGIE, on améliore aussi la valeur du bâtiment

Des informations complémentaires sur le sujet «MINER-GIE» se trouvent sur le site Internet: www.minergie.ch.

Fig. 2
Maisons jumelles – Construction neuve
M. Weidauer-Weg 83 + 85 à Bienne
Standard MINERGIE (BE – 038)

1.2 Isolation thermique transparente (ITT)

Des éléments avec une isolation thermique transparente ne peuvent pas être traités de la même façon que des parois «normales». Le principe de l'ITT n'empêche pas seulement les pertes de chaleur, mais permet un chauffage solaire à travers la paroi: le rayonnement solaire pénètre au travers de l'ITT et chauffe la maçonnerie qui transmettra alors sa chaleur au local.

Par rapport à une isolation thermique normale, un mur lourd et une éventuelle protection solaire contre les surchauffes sont nécessaires.

Il n'est pas possible de donner de conductivité thermique λ fixe applicable à tous les systèmes ITT, car celle-ci dépend de la structure et de l'épaisseur du dispositif.

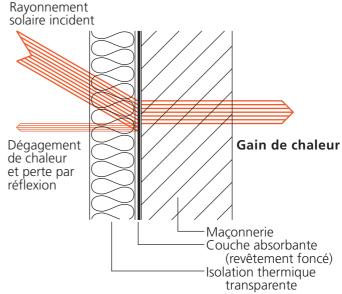


Fig. 3
Fonctionnement d'une ITT

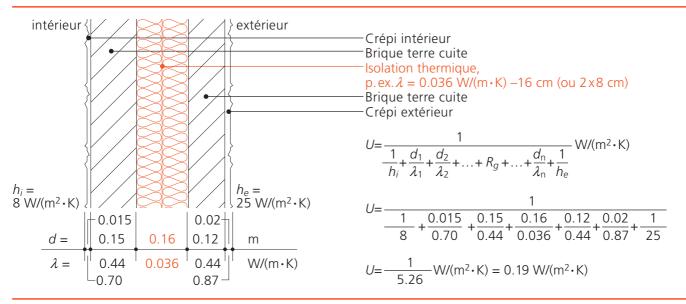
2 Calcul de la valeur *U*

Ce chapitre présente la méthode de calcul de la valeur *U* pour des constructions simples telles que des éléments homogènes. Il contient les bases nécessaires et les paramètres indispensables, à savoir les coefficients de transfert de chaleur surfacique, les résistances thermiques des lames et les caractéristiques des matériaux. Il donne également quelques indications sur la façon de procéder lors de constructions plus complexes, dans lesquelles peuvent intervenir des éléments inhomogènes, des ponts thermiques, des façades ventilées ou des chauffages par le sol. Cinq exemples et un exercice illustrent l'application concrète de ce calcul.

2.1 Eléments homogènes

Par éléments homogènes, on entend des constructions constituées de plusieurs couches de matériaux posées les unes contre les autres. Par opposition, on parle d'éléments inhomogènes lorsque des interruptions régulières surviennent, dues à des éléments tels que poutrelles en acier, piliers en béton ou chevrons intercalés (chap. 2.2).

Pour autant que les couches de matériaux soient connues avec précision, la valeur *U* d'éléments de construction existants ou assainis sera calculée selon la formule suivante:


$$U = \frac{1}{\frac{1}{h_i} + \frac{d_1}{\lambda_1} + \frac{d_2}{\lambda_2} + \dots + R_g + \dots + \frac{d_n}{\lambda_n} + \frac{1}{h_e}} W/(m^2 \cdot K)$$

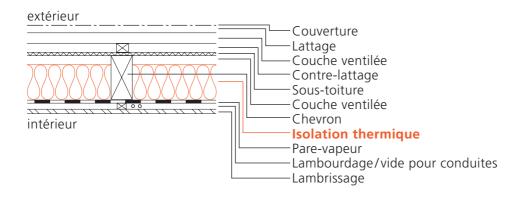
 $d_1...d_n$ épaisseur de la couche du matériau correspondant, en m

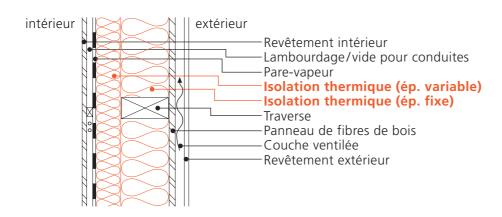
 h_i , h_e coefficients de transfert de chaleur surfacique, en $W/(m^2 \cdot K)$ (chap. 2.3.1)

 $\lambda_1...\lambda_n$ conductivité thermique du matériau correspondant, en W/(m·K)(chap. 2.3.2)

 R_q résistance thermique de couches d'air (chap. 2.3.3)

Au chapitre 4.1, on trouvera les valeurs U des **éléments de construction homogènes les plus utilisés** ainsi que les épaisseurs d'isolation thermique employées le plus fréquemment.


Fig. 4Exemple de calcul de la valeur U: maçonnerie à double paroi


10 2.2 Eléments inhomogènes

Dans les **éléments inhomogènes**, une, voire plusieurs couches n'occupent pas l'entier de la surface, mais sont interrompues à distance régulière par d'autres éléments, en général meilleurs conducteurs de chaleur (voir fig. 5). Il faut tenir compte de telles interruptions, car la valeur *U* qui en résulte est moins bonne. La Norme SN EN ISO 6946 présente une méthode simplifiée pour le calcul de la résistance thermique d'un élément composé de couches homogènes et inhomogènes.

Lors de constructions complexes, ainsi que lors de ponts thermiques fréquents (p. ex. sous-construction en aluminium de façades ventilées), la valeur *U* sera déterminée soit par des mesures, soit par un certificat, ou à l'aide de logiciels spécifiques ou encore grâce au Catalogue des ponts thermiques. La page 22 montre un exemple qui s'y rapporte.

Les valeurs *U* des **éléments inhomogènes les plus utilisés**, ainsi que les épaisseurs d'isolation les plus courantes, sont données au chap. 4.2.

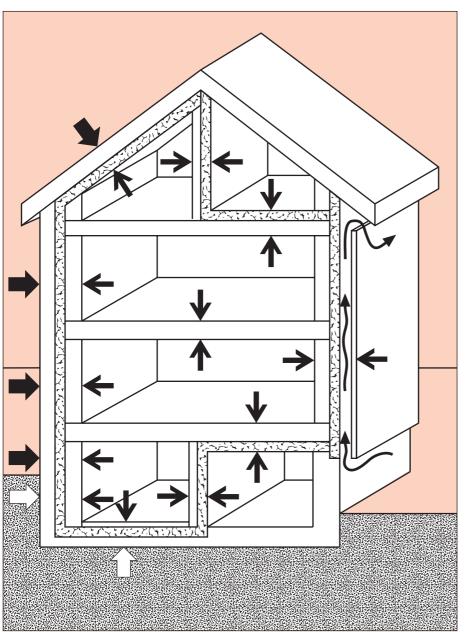
Fig. 5Exemple d'éléments inhomogènes.

2.3 Valeurs de calcul

2.3.1 Coefficients de transfert de chaleur surfacique h

La transmission de chaleur entre l'air intérieur et l'élément est indiquée par le coefficient de transfert de chaleur surfacique h_i (anciennement α_i); celle qui a lieu entre l'élément et l'air extérieur, par le coefficient de transfert de chaleur surfacique h_e (anciennement α_e).

La Norme SIA 180 «Isolation thermique et protection contre l'humidité dans les bâtiments» contient de plus amples informations à ce sujet.


La résistance thermique superficielle Rs est l'inverse du 11 coefficient de transfert de chaleur surfacique h. On applique les valeurs suivantes :

$$R_{si} = \frac{1}{h_i} = 0.13 \text{ m}^2 \cdot \text{K/W}$$
 $h_i = 8 \text{ W/(m}^2 \cdot \text{K)}$


$$R_{se} = \frac{1}{h_e} = 0.04 \text{ m}^2 \cdot \text{K/W}$$
 $h_e = 25 \text{ W/(m}^2 \cdot \text{K)}$

pour les parties en contact avec le sol:

$$R_{se} = \frac{1}{h_e} = 0 \text{ m}^2 \cdot \text{K/W}$$

Résistances thermiques superficielles R_s en $m^2 \cdot K/W$

Circulation d'air

2.3.2 Conductivité thermique λ des matériaux

La conductivité thermique λ (lambda) indique la résistance qu'un matériau oppose au flux de chaleur. Elle correspond à la densité du flux thermique traversant, en régime stationnaire, un corps homogène soumis à un gradient de température de 1 Kelvin par mètre.

On peut appliquer la règle suivante:

Plus la valeur λ est petite, meilleure est l'isolation.

12 Extrait de la Prénorme SIA 279 «Isolants thermiques»:

Les valeurs utiles de conductivité thermique s'appliquent au domaine du bâtiment en général, compte tenu de conditions climatiques normales en Suisse; elles s'utilisent pour le calcul des besoins et des bilans énergétiques.

Comme valeur utile, on utilisera la valeur déclarée λ_D établie pour un produit et validée par la SIA. La colonne «contrôlée» du tableau 1 donne la plage de la conductivité thermique des matériaux types pour lesquels les valeurs déclarées de conductivité thermique ont été certifiées. Si on choisit un matériau dont la conductivité thermique est connue, sans encore avoir choisi de produit, on utilisera la valeur maximale indiquée pour ce groupe de matériaux.

Pour des produits dont les valeurs n'ont pas été déclarées, on utilisera les valeurs utiles spécifiques du matériau, indiquées au tableau 1, à la colonne «non contrôlée».

La plupart des fabricants indiquent sur l'emballage la valeur λ déclarée de leurs produits.

Si, en lieu et place de la désignation générale de matériaux, par exemple laine de verre, verre cellulaire, polystyrène, etc., on emploie des marques de produits telles que swisspor, ROXON-Alu, Isover Luro 614, Flumroc Tria, etc., il est possible d'utiliser les valeurs λ correspondantes tirées du Cahier technique SIA 2001 «Valeurs caractéristiques des isolants thermiques – valeurs thermiques déclarées et autres données des fournisseurs et fabricants». Ce cahier est périodiquement mis à jour et ne contient que des produits dont la conductivité thermique a été déclarée selon l'annexe A de la Prénorme SIA 279.

Tableau 1: Valeurs utiles pour calculs de physique du bâtiment Extrait de la Documentation SIA D0170

Extrait de la Documentation :	SIA D0170	1	
Matériau	Masse	Conductivité th	
	volumique	valeur déclarée	λD
	nominale	(1011 0110) 27	
	$ ho_{a}$	contrôlée 1	non- contrôlée
	kg/m³	W/(m · K)	W/(m·K)
Laine de verre			
panneaux, matelas, rouleaux	10-120	0.031-0.048	0.055
en vrac	30–100	2	0.060
Laine de pierre			
panneaux, matelas, rouleaux	15–200	0.034-0.048	0.055
en vrac	30-100	2	0.060
Verre cellulaire			
panneaux	100-150	0.040-0.055	0.064
en vrac	250-450	2	0.094
Perlite, Vermiculite en vrac	50-130	2	0.084
Polystyrène, expansé (EPS)	30–15	0.032-0.042	0.048
Polystyrène, extrudé (XPS)			
cellules contenant un gaz isolant	25-65	0.028-0.036	0.043
cellules contenant de l'air	25-65	0.034-0.038	0.046
Polyuréthane (PUR) et			
Polyisocyanurate (PIR)			
cellules contenant du pentane			
étanche à la diffusion	28-55	0.022-0.027	0.032
perméable à la diffusion	28-55	0.026-0.033	0.037
cellules contenant du CO ₂	35-60	0.032-0.038	0.045
Liège: panneaux, matelas	90–160	0.040-0.047	0.056
Laine de bois			
panneaux	30-150	0.067-0.089	0.107
panneaux de constr. légers	250-450	2	0.095
parements de panneaux		_	
multicouches 3			
5 mm	2	2	0.15
7,5 mm	2	2	0.125
10 mm	2	2	0.10
Panneaux de fibres de bois	120-300	0.044-0.065	0.080
rainicaax ac hibres ac bois	300-600	2	0.110
Cellulose (fibre de)	300 000	2	0.110
panneaux	2	2	0.065
en vrac	30-80	2	0.060
	30-00		0.000
Mat. isolants d'origine végétale panneaux à fibres plates	25–35	2	0.055
panneaux de roseaux	150-200	2	0.055
matelas de fibres de coco		2	
	50-100		0.066
coton	> 25	2	0.055
Mat. isolants d'origine animale laine de mouton	20-60	2	0.055
iaine de mouton	20-60		0.055

- 1 Ces valeurs se réfèrent aux produits disponibles sur le marché (voir aussi Cahier technique SIA 2001). Des valeurs inférieures et supérieures sont également possibles. La valeur déclarée spécifique au produit est déterminante (preuve de contrôle indispensable).
- 2 Valeur actuellement non encore définie ou trop peu de données à disposition.
- La résistance thermique des panneaux isolants multicouches en laine de bois se calcule en additionnant les résistances thermiques des différentes couches. Pour calculer la résistance thermique des parements, on utilisera les valeurs de conductivité données dans la colonne «non contrôlée».

Groupe de matériaux ou application	Masse volumique ho kg/m ³	Conductivité thermique utile λ W/(m·K)
Paroi sans enduit		
Brique terre cuite BTC modulaire	1100	0.44
BTC modulaire, en boutisse		
et paneresse	1100	0.37
BTC isolante	1200	0.47
BTC de parement	1400	0.52
BTC pleine de cheminée	1800	0.80
Brique silico-calcaire	1600	0.80
	1800	1.00
	2000	1.10
Aggloméré plein en ciment	2000	1.10
Aggloméré creux en ciment	1200	0.70
Béton cellulaire	300	0.10
	400	0.13
	500	0.16
	600	0.19
Pierre naturelle		
Roche cristalline	2800	3.5
Roche sédimentaire	2600	2.3
Basalte 270	00 – 3000	3.5
Granit 250	00 – 2700	2.8
Marbre	2800	3.5
	00 – 2800	2.2
Grès (silice, molasse)	2600	2.3
Sol		
Argile ou limon 120	00 – 1800	1.5
Sable et gravier 170	00 – 2200	2.0
Béton 1		
densité moyenne	1800	1.15
	2000	1.35
	2200	1.65
haute densité	2400	2.00
armé (avec 1% d'acier)	2300	2.3
armé (avec 2% d'acier)	2400	2.5
Enduit, mortier		
Enduit intérieur, pour calcul norr	mal 1400	0.70
Enduit extérieur, pour calcul nor	mal 1800	0.87
Enduit isolant extérieur	300	0.08
	450	0.14
Mortier de chaux	1800	0.87
Mortier bâtard	1900	1.00
Mortier de ciment	2200	1.40
Enduit isolant au plâtre	600	0.18
Enduit plâtre	1000	0.40
Litauit platie	1000	

Tableau 2

Masse volumique ρ et conductivité thermique λ des principaux matériaux de construction Extrait de la Documentation SIA D0170

Groupe de matériaux ou application	Masse volumique $ ho$ kg/m 3	Conductivite thermique utile λ W/(m·K)	
Plâtre			
Plâtre	600	0.18	
	900	0.30	
	1200	0.43	
	1500	0.56	
Plaque de carton-plâtre 2	900	0.25	
Bois 3			
Bois	500	0.13	
	700	0.18	
Panneau de fibres	250	0.07	
	400	0.10	
	600	0.14	
	800	0.18	
Panneau de particules	300	0.10	
	600	0.14	
	900	0.18	
Panneau de particules			
liées au ciment	1200	0.23	
Matériaux divers Métaux			
Alliages d'aluminium	2800	160	
Acier	7800	50	
Acier inoxydable	7900	17	
Verre (verre sodo-calcique,			
y.c. «verre flotté»)	2500	1.00	
Quartz	2200	1.40	
Eau +10°C	1000	0.60	
Eau +40°C	990	0.63	
Glace à −10°C	920	2.30	
Glace à 0°C	900	2.20	
Neige, fraîchement tombée			
(< 30 mm)	100	0.05	
Chlorure de polyvinyle (PVC)	1390	0.17	
Planelle			
Céramique / porcelaine	2300	1.3	
Plastique	1000	0.20	
Caoutchouc			
Naturel	910	0.13	
Néoprène (Polychloroprène)	1240	0.23	
Caoutchouc butyle	1200	0.24	

- La masse volumique pour le béton est calculée après séchage.
- 2 La conductivité thermique tient compte de l'effet des revêtements papier.
- 3 La masse volumique pour le bois et les produits à base de bois est la masse volumique avec l'humidité à l'équilibre à une ambiance de 20°C et 65% d'humidité relative.

Dans le calcul de la valeur *U*, les **lames d'air confinées** dans les espaces vides constituent un cas particulier. Une lame d'air est dite confinée, lorsque l'espace vide est séparé de l'espace environnant.

Dans la pratique, les propriétés isolantes sont définies à l'aide de la résistance thermique R_g en $m^2 \cdot K/W$ (tabl. 3). Dans la formule qui sert à calculer la valeur U, on peut directement remplacer le rapport d/λ correspondant à la lame d'air par la valeur R_g correspondante (voir aussi chap. 2.5).

	Direction du flux thermique				
	ascendant	horizontal	descendant		
Epaisseur de la	e	i e			
lame d'air en mm					
5	0.11	0.11	0.11		
10	0.15	0.15	0.15		
25	0.16	0.18	0.19		
50	0.16	0.18	0.21		
100	0.16	0.18	0.22		

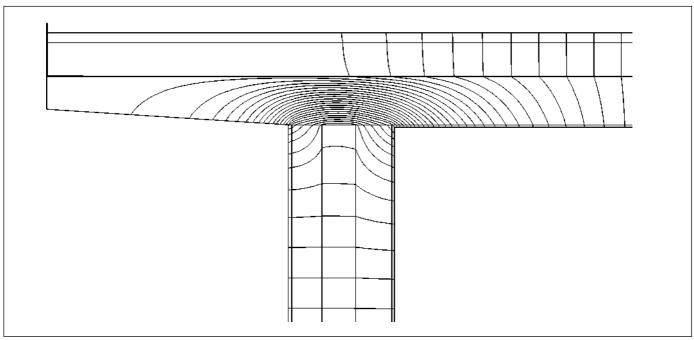
Les valeurs intermédiaires peuvent être interpolées.

Tableau 3

Résistance thermique R_g en $m^2 \cdot K/W$ des lames d'air confinées dans des plafonds, parois et planchers

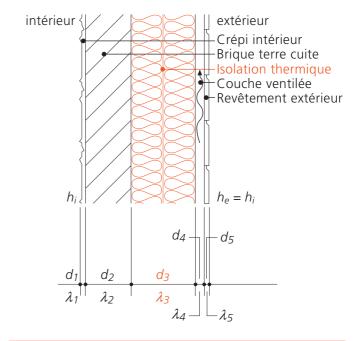
On trouve des indications complémentaires relatives à la résistance thermique R_g de lames d'air dans la Norme SN EN ISO 6946.

2.4 Ponts thermiques

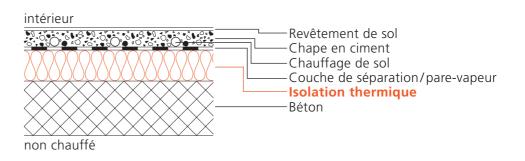

Les ponts thermiques (fig. 7) sont des points faibles de l'enveloppe du bâtiment, par lesquels transite plus de chaleur que par les éléments adjacents. Alternance de matériaux, modification de la structure, pénétration, contact entre deux éléments provoquent souvent des ponts thermiques.

Ils conduisent à des pertes de chaleur plus élevées et à des

risques du point de vue de la physique du bâtiment comme de l'hygiène. Dans la mesure du possible, il faut les éviter en prenant des mesures constructives adaptées. Les normes et les prescriptions cantonales sur l'isolation thermique exigent de tenir compte des ponts thermiques. Le sujet des ponts thermiques est traité de manière simplifiée dans le «Catalogue des ponts thermiques». En plus des majorations pour ponts thermiques au point de rencontre de deux éléments (p. ex. toit plat – mur extérieur), on y trouve aussi les corrections de valeur U pour les perturbations répétitives comme p. ex. dans les façades ventilées.


Fig. 7

Représentation des lignes de flux thermique, sur une coupe d'un mur en maçonnerie à double paroi raccordé à un toit plat. Au niveau du pont thermique, les espaces entre les lignes de flux sont plus petits que dans la partie non perturbée, c'est-à-dire que le flux vers l'extérieur est plus important à cet endroit que sur les surfaces adjacentes.


Lorsque interviennent des barrières de vapeur, des éléments ventilés, des systèmes de chauffage par le sol et des toitures inversées, il faut tenir compte des facteurs suivants dans le calcul de la valeur *U*:

- Les barrières et les freins de vapeur, les étanchéités contre l'humidité, etc. ne sont pas pris en considération dans le calcul de la valeur *U*, car leur influence est négligeable.
- Pour les façades ventilées (fig. 8) et les toitures ventilées, on peut ignorer la résistance thermique de la couche d'air ventilée et de toutes les autres couches jusqu'à l'extérieur. Dans ce cas, le coefficient de transfert surfacique extérieur he sera compté avec la même valeur que le coefficient de transfert surfacique intérieur hi de l'élément.

■ En ce qui concerne les systèmes de chauffage par le sol, on ne tient pas compte des couches situées audessus de l'isolation, ni du coefficient de transfert de chaleur surfacique intérieur *h_i* (fig. 9).

Fig. 8 Façade ventilée

■ L'épaisseur de la couche isolante d'une **toiture inver- sée** doit être majorée de 20% pour que la valeur *U* calculée soit réellement atteinte. Si, par exemple, la valeur *U* calculée pour une telle toiture est de 0.18 W/ (m²·K) avec une isolation de 20 cm, il faudra augmenter effectivement la couche d'isolation de 20%, c'està-dire lui donner une épaisseur de 24 cm pour que les 0.18 W/(m²·K) soient atteints.

Pour d'autres indications concernant la planification et le dimensionnement des toitures inversées: voir la Recommandation SIA 271 «Toits plats».

Fig. 9Chauffage par le sol

16 2.6 Exemples

A l'aide des cinq exemples ci-dessous, nous allons voir comment se calcule la valeur U. Etant donné qu'il est judicieux de subdiviser cette procédure en plusieurs parties, on s'aide d'un tableau appelé «tableau A». Le lecteur qui souhaite exécuter ce calcul dans des cas de figure bien précis ou joindre celui-ci en guise de justification à une demande d'autorisation de construire adressée à l'autorité compétente, peut photocopier le tableau A qui se trouve à la fin de cette publication.

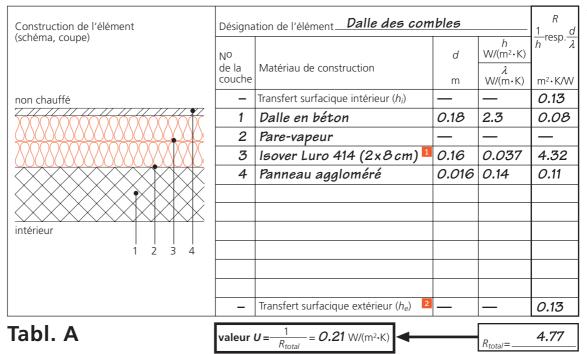
Comme le calcul d'éléments inhomogènes est très complexe, nous ne présentons ici que des exemples de calcul pour des éléments homogènes.

Exemple 1

Construction de l'élément	Désigna	Désignation de l'élément Mur extérieur				
(schéma, coupe)	No de la couche	Matériau de construction	d	h $W/(m^2 \cdot K)$	$\frac{1}{h}$ resp. $\frac{3}{\lambda}$	
1	2	Transfert surfacique intérieur (h _i)		W/(m⋅K) 8	0.13	
int. \\ \\ \\ ext.	1	Crépi intérieur	0.015	0.70	0.02	
	2	Brique terre cuite	0.15	0.44	0.34	
	3	Saglan SB 22	0.16	0.036	4.44	
•	4	Brique terre cuite	0.12	0.44	0.27	
	5	Crépi extérieur	0.02	0.87	0.02	
		Transfert surfacique extérieur (<i>h</i> _e)		25	0.04	

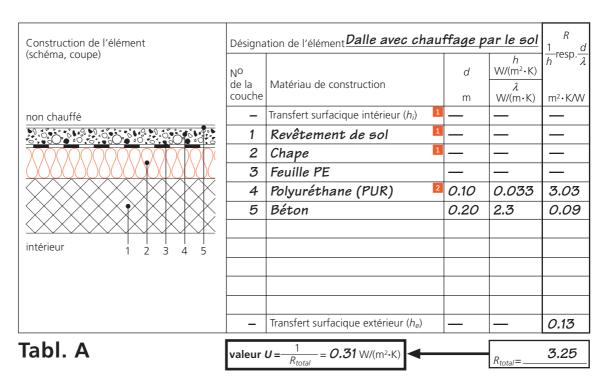
Tabl. A

valeur $U = \frac{1}{R_{total}} = 0.19$	W/(m ² •K)	R _{total} = 5.26
		•

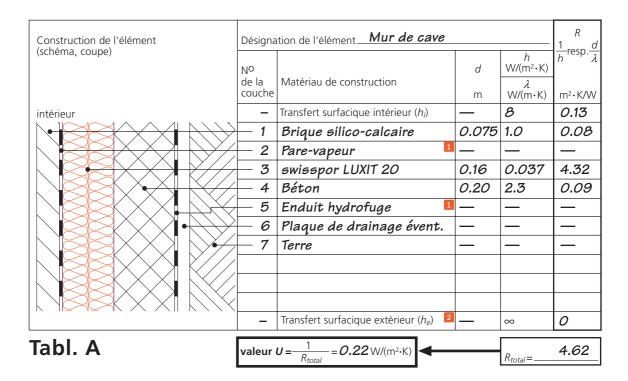

- 1 Schéma de l'élément
- 2 Numérotation des couches
- 3 Désignation des matériaux de l'intérieur vers l'extérieur
- 4 d =épaisseur de la couche, en m
- (5) $h = \text{coefficient de transfert de chaleur surfacique, en W/(m}^2 \cdot K) (chap. 2.3.1)$

 λ = conductivité thermique du matériau, en W/(m·K) (chap. 2.3.2)

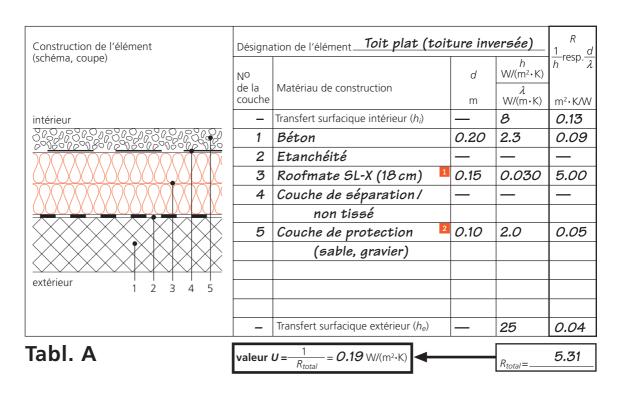
- 6 Calcul de $\frac{1}{h} = \frac{1}{5}$ resp. $\frac{d}{\lambda} = \frac{4}{5}$ en m² · K/W, valeur *R* (résistance thermique)
- 7 Somme R_{total} des valeurs R de la colonne 6
- 8 Calcul de la valeur $U: U = \frac{1}{R_{total}} = \frac{1}{7}$ en W/(m² · K)


Il n'est pas opportun d'indiquer des valeurs *U* comprenant plus de 2 décimales!

Exemple 2


- **I** La valeur λ a été tirée du Cahier technique SIA 2001 «Isolants thermiques» (édition 2001).
- 2 Contre un espace non chauffé: $R_{se} = \frac{1}{h_e} = 0.13 \text{ m}^2 \cdot \text{K/W}$ (chap. 2.3.1).

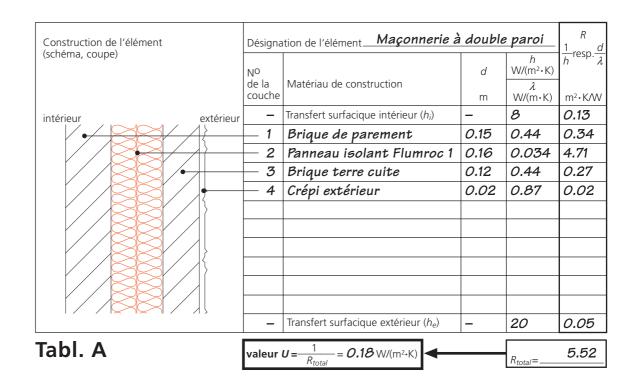
Exemple 3


- 1 Dans le cas du chauffage par le sol, les couches situées au-dessus de l'isolation ne sont pas prises en compte dans le calcul de la valeur *U*. On néglige donc le transfert surfacique intérieur, le revêtement ainsi que la chape (chap. 2.5).
- 2 Si on prévoit une isolation déclarée, mais sans avoir défini de produit, il faut prendre la valeur λ la plus élevée de ce groupe de matériaux. Si le produit est déterminé, comme p. ex. ROXON-Alu avec une valeur λ de 0.026 W/(m · K) à la place de «Polyuréthane (PUR)», la valeur U serait de 0.25 W/(m² · K).

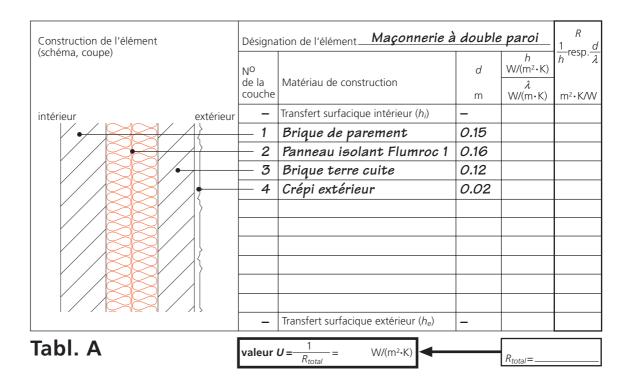
18 Exemple 4

- 1 Ne pas tenir compte ni du pare-vapeur, ni de J'enduit hydrofuge (chap. 2.5).
- 2 Contre terre $h_e = \infty$ (infini), par conséquent $\frac{1}{h_e} = R_{se} = 0$ m² · K/W (chap. 2.3.1).

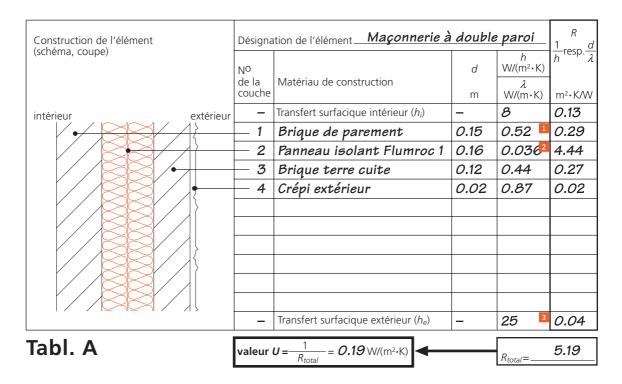
Exemple 5



- L'épaisseur prévue de l'isolation est de 18 cm. Selon SIA 271, pour une toiture inversée, il faut la majorer de 20%. C'est pourquoi on ne tient compte que de 15 cm d'épaisseur (18 cm /1.2) dans le calcul de la valeur *U*.
- 2 La valeur λ a été tirée du tableau 2 (chap. 2.3.2).


2.7 Exercice 19

L'exercice suivant consiste à vérifier un calcul de la valeur U.

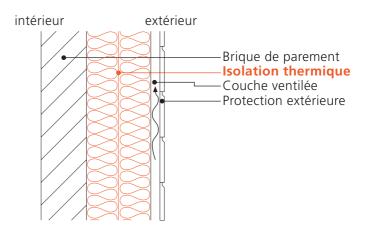

Lors d'une mise à l'enquête, on a joint le calcul de la valeur U suivant; trois erreurs s'y sont glissées. Essayez de les découvrir!

Trouvez la valeur *U* **exacte** de l'exemple ci-dessus en effectuant vous-même le calcul selon le tableau ci-dessous. Vous trouverez la solution à la page suivante.

Calcul correct de la valeur *U*:

- 1 Valeur λ fausse. La valeur λ de briques de parement est moins bonne que celle de briques terre cuite.
- 2 Valeur λ fausse. La spécification du produit est connue, mais la valeur λ ne correspond pas à ce produit, mais p. ex. à celle «Panneau isolant Flumroc 3». Selon le Cahier technique SIA 2001 «Isolants thermiques» (édition 2001), la valeur λ est de 0.036 W/(m · K).
- Le coefficient de transfert de chaleur surfacique h_e est faux. Pour des éléments donnant contre l'extérieur $h_e = 25 \text{ W/(m}^2 \cdot \text{K})$ et non 20 W/(m² · K).

3 Détermination de la valeur U à l'aide du Catalogue d'éléments de construction


Le Catalogue d'éléments de construction est un ouvrage de référence relatif à la valeur *U* des éléments existants les plus couramment utilisés. Il permet à l'utilisateur de déterminer ou de contrôler la valeur *U* sans avoir à recourir au calcul. Le tableau B, à la page 73, vous y aidera. Il peut servir pour vos propres calculs ou être reproduit et remis à l'autorité compétente à titre justificatif.

Des détails de construction moins usités, qui ne sont pas mentionnés dans ce catalogue, peuvent être calculés selon le chap. 2 à l'aide du tableau A. S'il existe des données déclarées du fabricant, celles-ci peuvent également être appliquées. Cette brochure permet de déterminer rapidement les valeurs U de constructions neuves. En outre, il faut tenir compte lors des différentes applications, aussi bien de la protection thermique que des aspects liés à la physique du bâtiment, tels que la protection contre l'humidité et contre le bruit.

22 3.1 Exemple

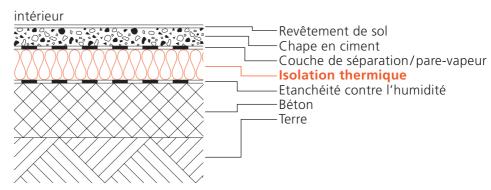
Façade ventilée avec sous-construction en aluminium (système entièrement en métal).

- Comme isolation thermique, on utilise 2 x 10 cm Isover PRF
- Les consoles sont montées sur des cales destinées à interrompre le pont thermique.
- La majoration pour pont thermique pour 2 consoles/m² s'élève à $\Delta U = 0.05$ W/(m² · K). Cette majoration est tirée du Catalogue des ponts thermiques.

1) N ^O de l'élément	Indications relatives à l'isolant therm 2 Matériau	ique Produit	d m	λ W/(m·K)	Valeur <i>U</i> en W/(m²•K)
W6	Laine de verre	Isover PB F	0.20	0.032	0.20

Tabl. B

- 1 Numéro de l'élément selon chap. 4.1.2 du Catalogue d'éléments de construction.
- 2 Désignation du matériau selon tableau 1, chap. 2.3.2.
- 3 Désignation spécifique de l'isolant thermique.
- (4) Epaisseur *d* de l'isolation, en m.
- (5) Conductivité thermique λ selon tabl.1, chap. 2.3.2 ou produit déterminé. Si le produit est déterminé, on peut tirer la valeur λ du Cahier technique SIA 2001 «Isolants thermiques».
- ⑥ Valeur U tirée du tableau de l'élément W6 (chap. 4.1.2). Cette valeur U s'élève à 0.15 W/(m²⋅ K). Il faut y ajouter la majoration pour pont thermique de 0.05 W/(m²⋅ K) tirée du Catalogue des ponts thermiques. La valeur U de l'élément est donc 0.20 W/(m²⋅ K). Ce procédé s'applique aux façades suspendues ventilées construites entièrement en métal. La majoration spécifique pour pont thermique doit être tirée du Catalogue des ponts thermiques.

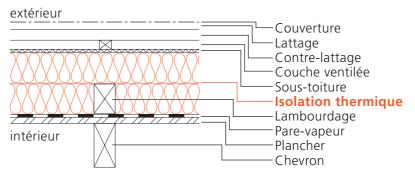

Pour les façades ventilées avec isolation posée entre lambourdage croisé, on peut tirer la valeur U de l'élément directement du chap. 4.1.2. Si l'exemple ci-dessus est exécuté de cette façon, alors l'élément W6i donne une valeur U = 0.18 W/(m²·K).

3.2 Exercices 23

A l'aide de deux exemples, nous allons apprendre ici à employer le Catalogue d'éléments de construction. Les solutions figurent à la page suivante.

Exercice 1

Déterminez la valeur *U* du plancher d'un local chauffé au sous-sol. (10 cm Styrodur 2500 C)



N ^O de	Indications relatives à l'isolant thermique				
l'élément	Matériau	Produit	d m	λ W/(m·K)	en W/(m²•K)
					·

Tabl. B

Exercice 2

Le toit incliné est isolé : il s'agit d'un élément inhomogène. On emploie au total 24 cm de laine de pierre (produit non spécifié).

N ^O de	Indications relatives à l'isolant thermique				
l'élément	Matériau	Produit	d m	λ W/(m∙K)	en W/(m²•K)

Tabl. B

Solution de l'exercice 1

N ^O de	Indications relatives à l'isolant thermique				
l'élément	Matériau	Produit	d m	λ W/(m⋅K)	en W/(m²•K)
B14	Polystyrène extrudé	Styrodur 2500 C	0.10	0.037	0.34

Tabl. B

- $lue{1}$ Selon le Cahier technique SIA 2001, resp. les valeurs déclarées par le fabricant, la valeur λ pour l'épaisseur d'isolation prévue est de 0.037 W/(m·K).
- 2 L'élément est homogène et peut donc être tiré du chapitre 4.1. Seules les valeurs U 0.32 et 0.36 W/(m²·K) correspondent aux valeurs λ 0.035 et 0.040 W/(m · K). La valeur *U* peut être interpolée: U = 0.34 W/(m² · K).

Solution de l'exercice 2

N ^O de	Indications relatives à l'isolant thermic	lue			Valeur <i>U</i>
l'élément	Matériau	Produit	d m	λ W/(m⋅K)	en W/(m²•K)
D4 1	Laine de pierre	Produit contrôlé	0.24	0.048	0.21

Tabl. B

- 1 L'élément est inhomogène et peut être tiré du chapitre 4.2.
- 2 Si aucune désignation exacte du produit n'est faite, mais qu'il s'agit d'un produit contrôlé, alors on prend la valeur indiquée dans le tableau 1 (chap. 2.3.2), soit $\lambda = 0.048 \text{ W/(m}^2 \cdot \text{K)}$ pour les panneaux de laine de pierre, ce qui donne une valeur U de 0.21 W/($m^2 \cdot K$). Avec une spécification du produit comme p. ex. Rockwool Panneau pour toiture inclinée 243, dont la valeur λ est de 0.035 W/(m·K) selon le Cahier technique SIA 2001, on obtient une valeur U de 0.17 W/(m² · K).

4 Catalogue d'éléments de construction

Les valeurs *U* d'éléments de constructions neuves sont indiquées pour les épaisseurs d'isolation thermique les plus utilisées. Pour d'autres épaisseurs, il faut procéder au calcul de la valeur *U* pour l'élément selon chap. 2.

Seules les valeurs *U* qui répondent aux exigences de la Norme SIA 180 «Isolation thermique et protection contre l'humidité dans les bâtiments» figurent dans les tableaux.

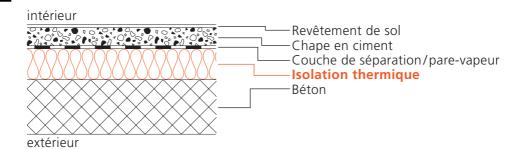
L'épaisseur des différentes couches de matériaux n'est pas indiquée sur les schémas du catalogue, car de petites variations par rapport aux épaisseurs usuelles ont une incidence négligeable sur la valeur *U*.

Par rapport à la première édition du catalogue «Construction neuve» de 1989, on a ajouté certains éléments. D'autres ont par contre été supprimés lorsque la pratique a montré qu'ils n'étaient que rarement utilisés. Comme la numérotation des éléments n'a pas changé, on y trouve à présent des lacunes. Les nouveaux éléments sont à chaque fois ajoutés à la fin du chapitre correspondant. De cette façon, il n'y a pas de contradiction entre les deux éditions du Catalogue des éléments de construction «Construction neuve».

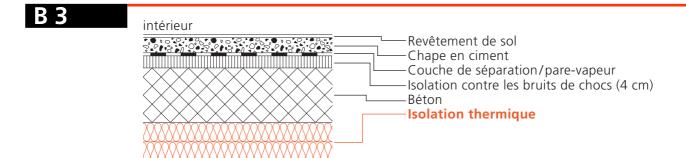
La valeur *U* de façades ventilées est d'abord donnée pour la variante «avec sous-construction métallique» et une isolation thermique homogène. Il faut y ajouter la majoration pour pont thermique, tirée du Catalogue de ponts thermiques. On trouve ensuite la variante «avec lambourdage».

Pour les systèmes de maçonnerie spéciale, il n'y a plus qu'un exemple, car dans la pratique, les constructions sont très changeantes.

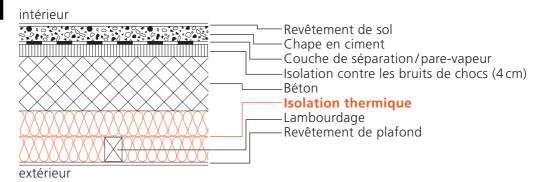
La valeur U des éléments inhomogènes dépend aussi du rapport entre la surface de lambourdage / traverses et celle de l'isolation thermique. Pour tous les éléments, on a choisi des rapports usuels.


4.1 Eléments homogènes	26
4.1.1 Planchers	
– contre l'air extérieur	
– contre des locaux non chauffés	27
– contre terre	29
– avec chauffage de sol	30
– Compléments à l'édition de 1989	33
4.1.2 Parois	34
 contre l'air extérieur, avec isolation extérie 	eure 34
 – contre l'air extérieur, avec isolation interm 	nédiaire 40
 contre des locaux non chauffés 	42
– contre terre	47
4.1.3 Toitures et dalles	50
– Toitures contre l'air extérieur	50
– Dalles contre des locaux non chauffés	53
4.2 Eléments inhomogènes	55
4.2.1 Planchers	
– Compléments à l'édition de 1989	55
4.2.2 Parois	
– Compléments à l'édition de 1989	58
4.2.3 Toitures et dalles	60
– Toitures contre l'air extérieur	60
 – Dalles contre des locaux non chauffés 	62
 Compléments à l'édition de 1989 	62

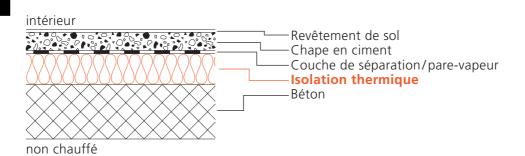
4.1 Eléments homogènes


4.1.1 Planchers

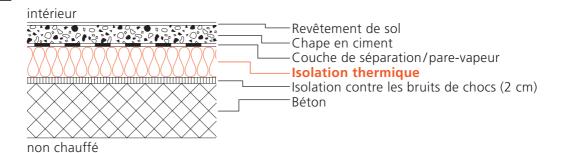
extérieur


contre l'air extérieur

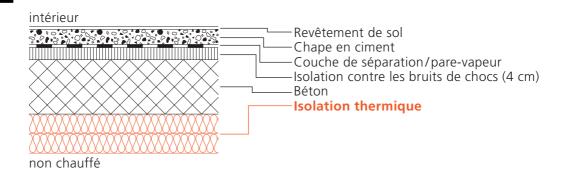
$\overline{\lambda}$	Epaisse	eur d'isol	Valeur <i>U</i> en W/(m²⋅K)							
W/(m·K)	6	8	10	12	14	16	18	20	22	24
0.050				0.36	0.32	0.28	0.25	0.23	0.21	0.19
0.045			0.39	0.33	0.29	0.26	0.23	0.21	0.19	0.18
0.040			0.35	0.30	0.26	0.23	0.21	0.19	0.17	0.16
0.035		0.38	0.31	0.27	0.23	0.20	0.18	0.17	0.15	0.14
0.030		0.33	0.27	0.23	0.20	0.18	0.16	0.14	0.13	0.12
0.025	0.36	0.28	0.23	0.19	0.17	0.15	0.13	0.12	0.11	0.10
0.020	0.30	0.23	0.19	0.16	0.14	0.12	0.11	0.10	0.09	0.08

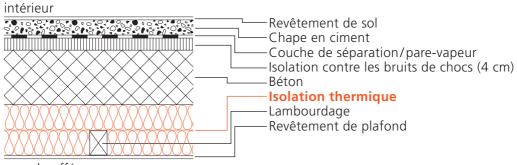


$\overline{\lambda}$	Epaisse	eur d'isol	Valeur <i>U</i> en W/(m ² · K)							
W/(m⋅K)	6	8	10	12	14	16	18	20	22	24
0.050	0.39	0.34	0.30	0.27	0.24	0.22	0.20	0.19	0.17	0.16
0.045	0.38	0.32	0.28	0.25	0.23	0.20	0.19	0.17	0.16	0.15
0.040	0.35	0.30	0.26	0.23	0.21	0.19	0.17	0.16	0.15	0.14
0.035	0.33	0.28	0.24	0.21	0.19	0.17	0.15	0.14	0.13	0.12
0.030	0.30	0.25	0.21	0.19	0.17	0.15	0.14	0.13	0.12	0.11
0.025	0.27	0.22	0.19	0.16	0.14	0.13	0.12	0.11	0.10	0.09
0.020	0.23	0.19	0.16	0.14	0.12	0.11	0.10	0.09	0.08	0.08

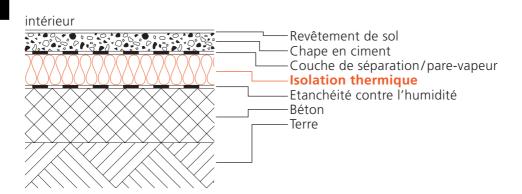


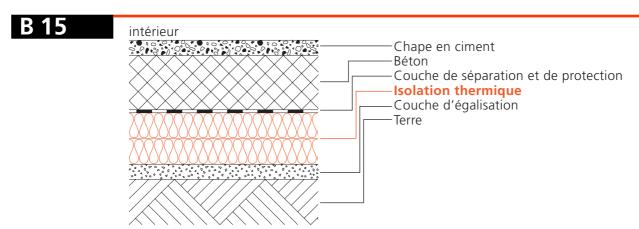
λ	Epaisse	eur d'isol	Valeu	Valeur <i>U</i> en W/(m²⋅K)						
W/(m⋅K)	6	8	10	12	14	16	18	20	22	24
0.050	0.40	0.35	0.31	0.28	0.25	0.23	0.22	0.20	0.19	0.18
0.045	0.38	0.33	0.29	0.26	0.24	0.22	0.20	0.19	0.18	0.16
0.040	0.36	0.32	0.28	0.25	0.22	0.21	0.19	0.18	0.16	0.15
0.035	0.35	0.30	0.26	0.23	0.21	0.19	0.17	0.16	0.15	0.14
0.030	0.32	0.28	0.24	0.21	0.19	0.17	0.16	0.15	0.14	0.13
0.025	0.30	0.25	0.22	0.19	0.17	0.16	0.14	0.13	0.12	0.11
0.020	0.27	0.23	0.19	0.17	0.15	0.14	0.13	0.12	0.11	0.10


contre des locaux non chauffés


$\overline{\lambda}$	Epaisse	eur d'isola		Valeur <i>U</i> en W/(m²⋅k						
W/(m·K)	6	8	10	12	14	16	18	20	22	24
0.050		0.49	0.41	0.35	0.31	0.28	0.25	0.23	0.21	0.19
0.045	0.57	0.45	0.38	0.32	0.28	0.25	0.23	0.21	0.19	0.17
0.040	0.52	0.41	0.34	0.29	0.25	0.23	0.20	0.18	0.17	0.16
0.035	0.47	0.37	0.30	0.26	0.23	0.20	0.18	0.16	0.15	0.14
0.030	0.41	0.32	0.27	0.23	0.20	0.17	0.16	0.14	0.13	0.12
0.025	0.35	0.28	0.23	0.19	0.17	0.15	0.13	0.12	0.11	0.10
0.020	0.29	0.23	0.18	0.16	0.13	0.12	0.11	0.10	0.09	0.08

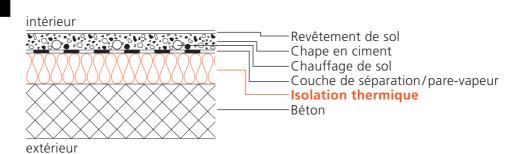
$\overline{\lambda}$	Epaisse	eur d'isola	Valeur <i>U</i> en W/(m²⋅K)							
W/(m⋅K)	6	8	10	12	14	16	18	20	22	24
0.050	0.47	0.40	0.34	0.30	0.27	0.24	0.22	0.20	0.19	0.17
0.045	0.44	0.37	0.32	0.28	0.25	0.22	0.20	0.19	0.17	0.16
0.040	0.41	0.34	0.29	0.25	0.23	0.20	0.18	0.17	0.16	0.14
0.035	0.38	0.31	0.26	0.23	0.20	0.18	0.16	0.15	0.14	0.13
0.030	0.34	0.28	0.23	0.20	0.18	0.16	0.14	0.13	0.12	0.11
0.025	0.30	0.24	0.20	0.17	0.15	0.14	0.12	0.11	0.10	0.10
0.020	0.25	0.20	0.17	0.14	0.13	0.11	0.10	0.09	0.08	0.08


λ	Epaisse	eur d'isol	Valeur <i>U</i> en W/(m ² · K)							
W/(m⋅K)	6	8	10	12	14	16	18	20	22	24
0.050	0.38	0.33	0.29	0.26	0.24	0.22	0.20	0.18	0.17	0.16
0.045	0.36	0.31	0.27	0.24	0.22	0.20	0.18	0.17	0.16	0.15
0.040	0.34	0.29	0.25	0.23	0.20	0.18	0.17	0.16	0.14	0.13
0.035	0.32	0.27	0.23	0.21	0.18	0.17	0.15	0.14	0.13	0.12
0.030	0.29	0.24	0.21	0.18	0.16	0.15	0.13	0.12	0.11	0.11
0.025	0.26	0.22	0.18	0.16	0.14	0.13	0.12	0.11	0.10	0.09
0.020	0.23	0.18	0.16	0.13	0.12	0.11	0.10	0.09	0.08	0.07

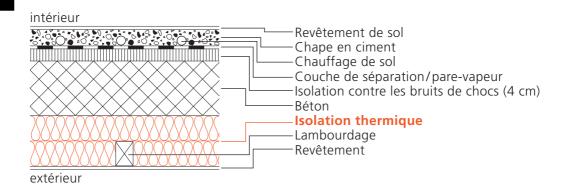

non chauffé

λ	Epaisse	eur d'isola	Valeur <i>U</i> en W/(m ² · K)							
W/(m·K)	6	8	10	12	14	16	18	20	22	24
0.050	0.39	0.34	0.31	0.28	0.25	0.23	0.22	0.20	0.19	0.18
0.045	0.37	0.33	0.29	0.26	0.24	0.22	0.20	0.19	0.18	0.17
0.040	0.36	0.31	0.28	0.25	0.22	0.21	0.19	0.18	0.16	0.15
0.035	0.34	0.29	0.26	0.23	0.21	0.19	0.18	0.16	0.15	0.14
0.030	0.32	0.27	0.24	0.21	0.19	0.17	0.16	0.15	0.14	0.13
0.025	0.29	0.25	0.22	0.19	0.17	0.16	0.14	0.13	0.12	0.12
0.020	0.27	0.22	0.19	0.17	0.15	0.14	0.13	0.12	0.11	0.10

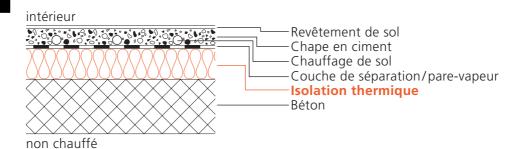
contre terre

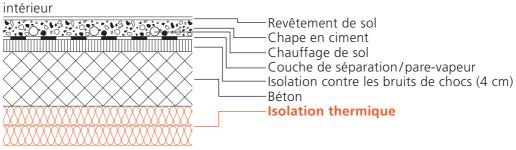


λ	Epaisse	eur d'isola		Valeur <i>U</i> en W/(m ² ⋅K)						
W/(m·K)	6	8	10	12	14	16	18	20	22	24
0.050		0.53	0.44	0.37	0.32	0.29	0.26	0.23	0.21	0.20
0.045		0.48	0.40	0.34	0.29	0.26	0.23	0.21	0.19	0.18
0.040	0.56	0.44	0.36	0.30	0.26	0.23	0.21	0.19	0.17	0.16
0.035	0.50	0.39	0.32	0.27	0.23	0.21	0.18	0.17	0.15	0.14
0.030	0.44	0.34	0.28	0.23	0.20	0.18	0.16	0.14	0.13	0.12
0.025	0.37	0.29	0.23	0.20	0.17	0.15	0.13	0.12	0.11	0.10
0.020	0.30	0.23	0.19	0.16	0.14	0.12	0.11	0.10	0.09	0.08

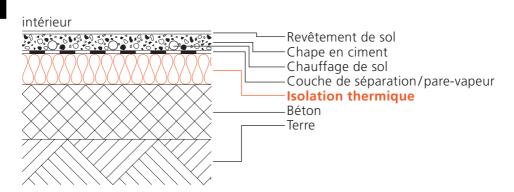


$\overline{\lambda}$	Epaisse	eur d'isol	ation, en	cm				Valeur <i>U</i> en W/(m ² · K)			
W/(m·K)	6	8	10	12	14	16	18	20	22	24	
0.050		0.53	0.44	0.37	0.32	0.29	0.26	0.23	0.21	0.20	
0.045		0.49	0.40	0.34	0.29	0.26	0.23	0.21	0.19	0.18	
0.040	0.56	0.44	0.36	0.30	0.26	0.23	0.21	0.19	0.17	0.16	
0.035	0.50	0.39	0.32	0.27	0.23	0.21	0.18	0.17	0.15	0.14	
0.030	0.44	0.34	0.28	0.23	0.20	0.18	0.16	0.14	0.13	0.12	
0.025	0.37	0.29	0.23	0.20	0.17	0.15	0.13	0.12	0.11	0.10	
0.020	0.30	0.23	0.19	0.16	0.14	0.12	0.11	0.10	0.09	0.08	

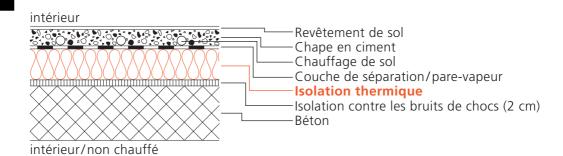

avec chauffage de sol


$\overline{\lambda}$	Epaisse	eur d'isol		Valeur <i>U</i> en W/(m²⋅l						
W/(m⋅K)	6	8	10	12	14	16	18	20	22	24
0.050				0.40	0.34	0.30	0.27	0.24	0.22	0.20
0.045				0.36	0.31	0.27	0.24	0.22	0.20	0.18
0.040			0.38	0.32	0.28	0.24	0.22	0.20	0.18	0.16
0.035			0.33	0.28	0.24	0.21	0.19	0.17	0.16	0.14
0.030		0.36	0.29	0.24	0.21	0.18	0.16	0.15	0.13	0.12
0.025	0.40	0.30	0.24	0.20	0.17	0.15	0.14	0.12	0.11	0.10
0.020	0.32	0.24	0.20	0.16	0.14	0.12	0.11	0.10	0.09	0.08

λ	Epaisse	eur d'isola	ation, en e	cm (que l'	isolation	thermiqu	e)	Valeur <i>U</i> en W/(m²⋅K)			
W/(m⋅K)	6	8	10	12	14	16	18	20	22	24	
0.050		0.38	0.34	0.30	0.27	0.25	0.23	0.21	0.20	0.19	
0.045		0.36	0.32	0.29	0.26	0.24	0.22	0.20	0.19	0.17	
0.040	0.40	0.34	0.30	0.27	0.24	0.22	0.20	0.19	0.17	0.16	
0.035	0.38	0.32	0.28	0.25	0.22	0.20	0.19	0.17	0.16	0.15	
0.030	0.35	0.30	0.26	0.23	0.20	0.19	0.17	0.16	0.14	0.13	
0.025	0.32	0.27	0.23	0.21	0.18	0.17	0.15	0.14	0.13	0.12	
0.020	0.29	0.24	0.21	0.18	0.16	0.15	0.13	0.12	0.11	0.10	



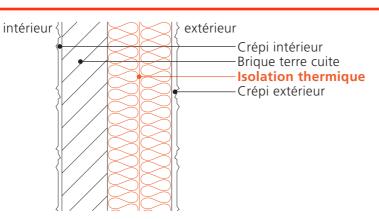
λ	Epaisse	eur d'isola	ation, en d	m				Valeur <i>U</i> en W/(m²⋅K)			
W/(m⋅K)	6	8	10	12	14	16	18	20	22	24	
0.050		0.55	0.45	0.38	0.33	0.29	0.26	0.24	0.22	0.20	
0.045		0.50	0.41	0.35	0.30	0.27	0.24	0.21	0.20	0.18	
0.040	0.58	0.45	0.37	0.31	0.27	0.24	0.21	0.19	0.17	0.16	
0.035	0.52	0.40	0.33	0.27	0.24	0.21	0.19	0.17	0.15	0.14	
0.030	0.45	0.35	0.28	0.24	0.20	0.18	0.16	0.15	0.13	0.12	
0.025	0.38	0.29	0.24	0.20	0.17	0.15	0.13	0.12	0.11	0.10	
0.020	0.31	0.24	0.19	0.16	0.14	0.12	0.11	0.10	0.09	0.08	


non chauffé

$\overline{\lambda}$	Epaisse	eur d'isol	ation, en	cm (que l'	isolation	thermiqu	e)	Valeur <i>U</i> en W/(m²			
W/(m⋅K)	6	8	10	12	14	16	18	20	22	24	
0.050	0.41	0.35	0.31	0.28	0.25	0.23	0.21	0.19	0.18	0.17	
0.045	0.39	0.33	0.29	0.26	0.23	0.21	0.19	0.18	0.16	0.15	
0.040	0.37	0.31	0.27	0.24	0.21	0.19	0.17	0.16	0.15	0.14	
0.035	0.34	0.29	0.25	0.22	0.19	0.17	0.16	0.14	0.13	0.12	
0.030	0.31	0.26	0.22	0.19	0.17	0.15	0.14	0.13	0.12	0.11	
0.025	0.28	0.23	0.19	0.17	0.15	0.13	0.12	0.11	0.10	0.09	
0.020	0.24	0.19	0.16	0.14	0.12	0.11	0.10	0.09	0.08	0.08	

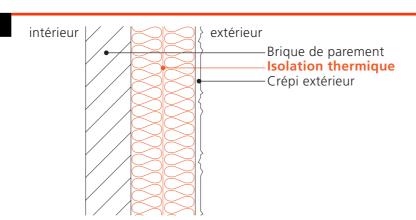
Epaisse	eur d'isola		Valeur <i>U</i> en W/(m²⋅K)						
6	8	10	12	14	16	18	20	22	24
	0.59	0.48	0.40	0.35	0.30	0.27	0.24	0.22	0.20
	0.54	0.43	0.36	0.31	0.27	0.24	0.22	0.20	0.18
	0.48	0.39	0.32	0.28	0.24	0.22	0.20	0.18	0.16
0.55	0.42	0.34	0.28	0.24	0.21	0.19	0.17	0.16	0.14
0.48	0.36	0.29	0.24	0.21	0.18	0.16	0.15	0.13	0.12
0.40	0.30	0.24	0.20	0.18	0.15	0.14	0.12	0.11	0.10
0.32	0.24	0.20	0.16	0.14	0.12	0.11	0.10	0.09	0.08
	0.55 0.48 0.40	0.59 0.54 0.48 0.55 0.42 0.48 0.36 0.40 0.30	6 8 10 0.59 0.48 0.54 0.43 0.48 0.39 0.55 0.42 0.34 0.48 0.36 0.29 0.40 0.30 0.24	0.59 0.48 0.40 0.54 0.43 0.36 0.48 0.39 0.32 0.55 0.42 0.34 0.28 0.48 0.36 0.29 0.24 0.40 0.30 0.24 0.20	6 8 10 12 14 0.59 0.48 0.40 0.35 0.54 0.43 0.36 0.31 0.48 0.39 0.32 0.28 0.55 0.42 0.34 0.28 0.24 0.48 0.36 0.29 0.24 0.21 0.40 0.30 0.24 0.20 0.18	6 8 10 12 14 16 0.59 0.48 0.40 0.35 0.30 0.54 0.43 0.36 0.31 0.27 0.48 0.39 0.32 0.28 0.24 0.55 0.42 0.34 0.28 0.24 0.21 0.48 0.36 0.29 0.24 0.21 0.18 0.40 0.30 0.24 0.20 0.18 0.15	6 8 10 12 14 16 18 0.59 0.48 0.40 0.35 0.30 0.27 0.54 0.43 0.36 0.31 0.27 0.24 0.48 0.39 0.32 0.28 0.24 0.22 0.55 0.42 0.34 0.28 0.24 0.21 0.19 0.48 0.36 0.29 0.24 0.21 0.18 0.16 0.40 0.30 0.24 0.20 0.18 0.15 0.14	6 8 10 12 14 16 18 20 0.59 0.48 0.40 0.35 0.30 0.27 0.24 0.54 0.43 0.36 0.31 0.27 0.24 0.22 0.48 0.39 0.32 0.28 0.24 0.22 0.20 0.55 0.42 0.34 0.28 0.24 0.21 0.19 0.17 0.48 0.36 0.29 0.24 0.21 0.18 0.16 0.15 0.40 0.30 0.24 0.20 0.18 0.15 0.14 0.12	6 8 10 12 14 16 18 20 22 0.59 0.48 0.40 0.35 0.30 0.27 0.24 0.22 0.54 0.43 0.36 0.31 0.27 0.24 0.22 0.20 0.48 0.39 0.32 0.28 0.24 0.22 0.20 0.18 0.55 0.42 0.34 0.28 0.24 0.21 0.19 0.17 0.16 0.48 0.36 0.29 0.24 0.21 0.18 0.16 0.15 0.13 0.40 0.30 0.24 0.20 0.18 0.15 0.14 0.12 0.11

Compléments à l'édition de 1989

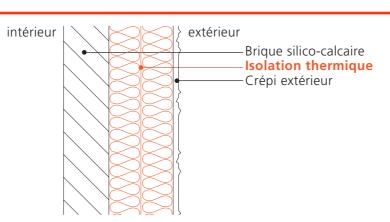


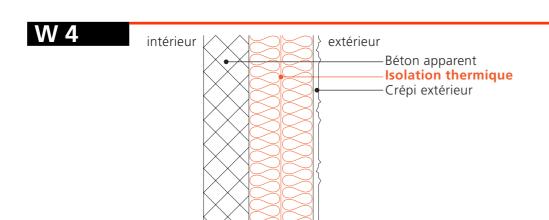
2	Epaisse	eur d'isola	ation, en d	cm (que l'	isolation	thermiqu	e)	Valeur <i>U</i> en W/(m ² ⋅K)			
W/(m⋅K)	6	8	10	12	14	16	18	20	22	24	
0.050	0.52	0.43	0.37	0.32	0.28	0.26	0.23	0.21	0.20	0.18	
0.045	0.49	0.40	0.34	0.30	0.26	0.23	0.21	0.19	0.18	0.17	
0.040	0.45	0.37	0.31	0.27	0.24	0.21	0.19	0.17	0.16	0.15	
0.035	0.41	0.33	0.28	0.24	0.21	0.19	0.17	0.16	0.14	0.13	
0.030	0.37	0.30	0.25	0.21	0.19	0.17	0.15	0.14	0.12	0.11	
0.025	0.32	0.26	0.21	0.18	0.16	0.14	0.13	0.11	0.11	0.10	
0.020	0.27	0.21	0.17	0.15	0.13	0.11	0.10	0.09	0.09	0.08	

4.1.2 Parois

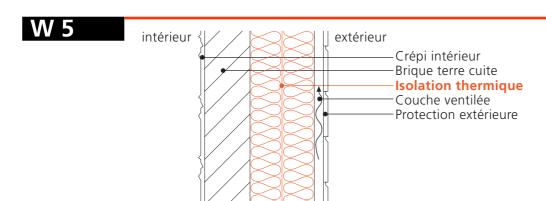

contre l'air extérieur, avec isolation extérieure

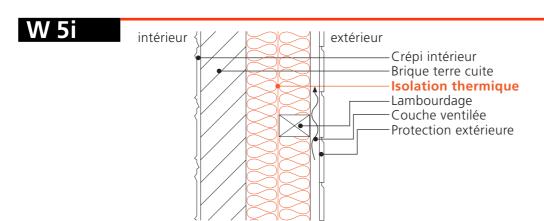
W 1

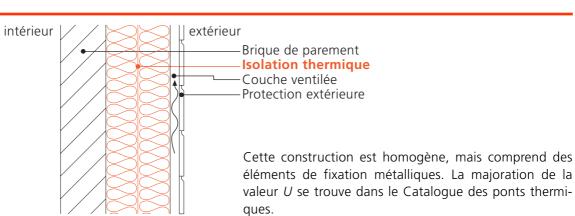

$\overline{\lambda}$	Epaisse	eur d'isol	ation, en	cm (au to	tal)			Valeur <i>U</i> en W/(m ² · K)			
W/(m·K)	10	12	14	16	18	20	22	24	26	28	
0.050	0.39	0.34	0.30	0.27	0.24	0.22	0.20	0.19	0.17	0.16	
0.045	0.36	0.31	0.27	0.24	0.22	0.20	0.18	0.17	0.16	0.15	
0.040	0.33	0.28	0.25	0.22	0.20	0.18	0.17	0.15	0.14	0.13	
0.035	0.29	0.25	0.22	0.20	0.18	0.16	0.15	0.13	0.13	0.12	
0.030	0.26	0.22	0.19	0.17	0.15	0.14	0.13	0.12	0.11	0.10	
0.025	0.22	0.19	0.16	0.14	0.13	0.12	0.11	0.10	0.09	0.09	
0.020	0.18	0.15	0.13	0.12	0.10	0.09	0.09	0.08	0.07	0.07	

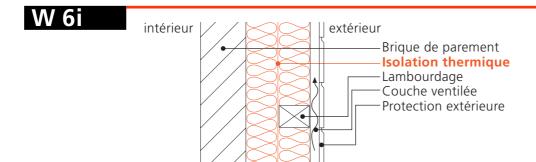


λ	Epaisse	eur d'isol	ation, en d	cm (au to	tal)			Valeur <i>U</i> en W/(m² · K)			
W/(m·K)	10	12	14	16	18	20	22	24	26	28	
0.050	0.40	0.35	0.30	0.27	0.25	0.22	0.20	0.19	0.18	0.16	
0.045	0.37	0.32	0.28	0.25	0.22	0.20	0.19	0.17	0.16	0.15	
0.040	0.34	0.29	0.25	0.22	0.20	0.18	0.17	0.15	0.14	0.13	
0.035	0.30	0.26	0.22	0.20	0.18	0.16	0.15	0.14	0.13	0.12	
0.030	0.26	0.22	0.19	0.17	0.15	0.14	0.13	0.12	0.11	0.10	
0.025	0.22	0.19	0.16	0.15	0.13	0.12	0.11	0.10	0.09	0.09	
0.020	0.18	0.15	0.13	0.12	0.11	0.10	0.09	0.08	0.07	0.07	


W 3


$\overline{\lambda}$	Epaisse	eur d'isola	ation, en	cm (au tot	al)			Valeur <i>U</i> en W/(m ² ⋅K)			
W/(m·K)	10	12	14	16	18	20	22	24	26	28	
0.050		0.36	0.32	0.28	0.25	0.23	0.21	0.19	0.18	0.17	
0.045	0.39	0.33	0.29	0.26	0.23	0.21	0.19	0.18	0.16	0.15	
0.040	0.35	0.30	0.26	0.23	0.21	0.19	0.17	0.16	0.15	0.14	
0.035	0.31	0.27	0.23	0.20	0.18	0.17	0.15	0.14	0.13	0.12	
0.030	0.27	0.23	0.20	0.18	0.16	0.14	0.13	0.12	0.11	0.10	
0.025	0.23	0.19	0.17	0.15	0.13	0.12	0.11	0.10	0.09	0.09	
0.020	0.19	0.16	0.14	0.12	0.11	0.10	0.09	0.08	0.07	0.07	


λ	Epaisse	ur d'isola	ition, en d	m (au tot	al)			Valeur <i>U</i> en W/(m²⋅K)			
W/(m·K)	10	12	14	16	18	20	22	24	26	28	
0.050		0.37	0.33	0.29	0.26	0.23	0.21	0.20	0.18	0.17	
0.045	0.40	0.34	0.30	0.26	0.23	0.21	0.19	0.18	0.17	0.15	
0.040	0.36	0.31	0.26	0.23	0.21	0.19	0.17	0.16	0.15	0.14	
0.035	0.32	0.27	0.23	0.21	0.18	0.17	0.15	0.14	0.13	0.12	
0.030	0.28	0.23	0.20	0.18	0.16	0.14	0.13	0.12	0.11	0.10	
0.025	0.23	0.20	0.17	0.15	0.13	0.12	0.11	0.10	0.09	0.09	
0.020	0.19	0.16	0.14	0.12	0.11	0.10	0.09	0.08	0.08	0.07	

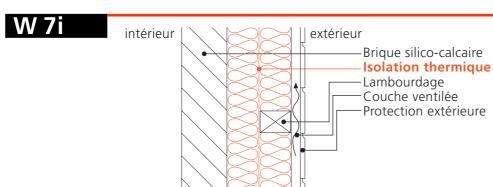

$\overline{\lambda}$	Epaisse	eur d'isol	ation, en	cm (au to	tal)			Valeu	Valeur <i>U</i> en W/(m ² · K)			
W/(m⋅K)	10	12	14	16	18	20	22	24	26	28		
0.050	0.38	0.33	0.29	0.26	0.24	0.22	0.20	0.18	0.17	0.16		
0.045	0.35	0.30	0.27	0.24	0.22	0.20	0.18	0.17	0.16	0.15		
0.040	0.32	0.28	0.24	0.22	0.20	0.18	0.16	0.15	0.14	0.13		
0.035	0.29	0.25	0.22	0.19	0.17	0.16	0.14	0.13	0.12	0.12		
0.030	0.25	0.22	0.19	0.17	0.15	0.14	0.13	0.12	0.11	0.10		
0.025	0.22	0.18	0.16	0.14	0.13	0.12	0.11	0.10	0.09	0.08		
0.020	0.18	0.15	0.13	0.12	0.10	0.09	0.09	0.08	0.07	0.07		

λ	Epaisse	eur d'isola	ation, en	cm (au to	tal)			Valeur <i>U</i> en W/(m²⋅K)			
W/(m·K)	10	12	14	16	18	20	22	24	26	28	
0.050		0.36	0.32	0.29	0.26	0.24	0.22	0.21	0.19	0.18	
0.045	0.39	0.34	0.30	0.27	0.25	0.22	0.21	0.19	0.18	0.17	
0.040	0.36	0.32	0.28	0.25	0.23	0.21	0.19	0.18	0.16	0.15	
0.035	0.33	0.29	0.26	0.23	0.21	0.19	0.17	0.16	0.15	0.14	
0.030	0.30	0.26	0.23	0.21	0.19	0.17	0.16	0.14	0.13	0.13	
0.025	0.27	0.23	0.21	0.18	0.17	0.15	0.14	0.13	0.12	0.11	
0.020	0.24	0.20	0.18	0.16	0.14	0.13	0.12	0.11	0.10	0.10	

$\overline{\lambda}$	Epaisse	eur d'isola	ation, en	cm (au to	tal)			Valeur <i>U</i> en W/(m²⋅K)			
W/(m⋅K)	10	12	14	16	18	20	22	24	26	28	
0.050	0.39	0.34	0.30	0.27	0.24	0.22	0.20	0.19	0.17	0.16	
0.045	0.36	0.31	0.27	0.24	0.22	0.20	0.18	0.17	0.16	0.15	
0.040	0.33	0.28	0.25	0.22	0.20	0.18	0.17	0.15	0.14	0.13	
0.035	0.29	0.25	0.22	0.20	0.18	0.16	0.15	0.14	0.13	0.12	
0.030	0.26	0.22	0.19	0.17	0.15	0.14	0.13	0.12	0.11	0.10	
0.025	0.22	0.19	0.16	0.14	0.13	0.12	0.11	0.10	0.09	0.09	
0.020	0.18	0.15	0.13	0.12	0.10	0.09	0.09	0.08	0.07	0.07	

L'isolation thermique est inhomogène (avec lambourdage croisé).

λ	Epaisse	eur d'isola		Valeur <i>U</i> en W/(m² · K)						
W/(m·K)	10	12	14	16	18	20	22	24	26	28
0.050		0.37	0.33	0.30	0.27	0.25	0.23	0.21	0.20	0.18
0.045	0.40	0.35	0.31	0.28	0.25	0.23	0.21	0.19	0.18	0.17
0.040	0.37	0.32	0.29	0.25	0.23	0.21	0.19	0.18	0.17	0.16
0.035	0.34	0.30	0.26	0.23	0.21	0.19	0.18	0.16	0.15	0.14
0.030	0.31	0.27	0.24	0.21	0.19	0.17	0.16	0.15	0.14	0.13
0.025	0.28	0.24	0.21	0.19	0.17	0.15	0.14	0.13	0.12	0.11
0.020	0.24	0.21	0.18	0.16	0.15	0.13	0.12	0.11	0.11	0.10


intérieur

-Brique silico-calcaire -**Isolation thermique** -Couche ventilée

Protection extérieure

Cette construction est homogène, mais comprend des éléments de fixation métalliques. La majoration de la valeur \boldsymbol{U} se trouve dans le Catalogue des ponts thermiques.

$\overline{\lambda}$	Epaisse	ur d'isola	ation, en	cm (au to	tal)			Valeur <i>U</i> en W/(m ² · K)			
W/(m⋅K)	10	12	14	16	18	20	22	24	26	28	
0.050		0.36	0.31	0.28	0.25	0.23	0.21	0.19	0.18	0.17	
0.045	0.38	0.33	0.28	0.25	0.23	0.21	0.19	0.17	0.16	0.15	
0.040	0.34	0.29	0.26	0.23	0.20	0.19	0.17	0.16	0.14	0.14	
0.035	0.31	0.26	0.23	0.20	0.18	0.16	0.15	0.14	0.13	0.12	
0.030	0.27	0.23	0.20	0.17	0.16	0.14	0.13	0.12	0.11	0.10	
0.025	0.23	0.19	0.17	0.15	0.13	0.12	0.11	0.10	0.09	0.09	
0.020	0.19	0.16	0.14	0.12	0.11	0.10	0.09	0.08	0.07	0.07	

L'isolation thermique est inhomogène (avec lambour-dage croisé).

λ	Epaisse	ur d'isola	ation, en d	cm (au tot	al)			Valeur <i>U</i> en W/(m ² · K)			
W/(m·K)	10	12	14	16	18	20	22	24	26	28	
0.050			0.36	0.32	0.29	0.26	0.24	0.22	0.21	0.19	
0.045		0.38	0.33	0.30	0.27	0.24	0.22	0.21	0.19	0.18	
0.040		0.35	0.31	0.27	0.25	0.22	0.21	0.19	0.18	0.16	
0.035	0.37	0.32	0.28	0.25	0.22	0.20	0.19	0.17	0.16	0.15	
0.030	0.34	0.29	0.25	0.22	0.20	0.18	0.17	0.15	0.14	0.13	
0.025	0.30	0.26	0.22	0.20	0.18	0.16	0.15	0.14	0.13	0.12	
0.020	0.26	0.22	0.19	0.17	0.15	0.14	0.13	0.12	0.11	0.10	

extérieur

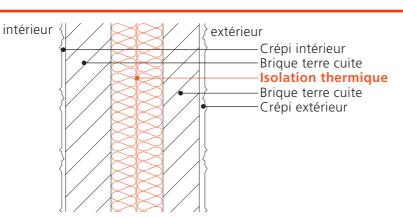
Béton apparent

Isolation thermique

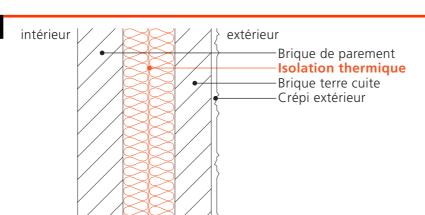

Couche ventilée

Protection extérieure

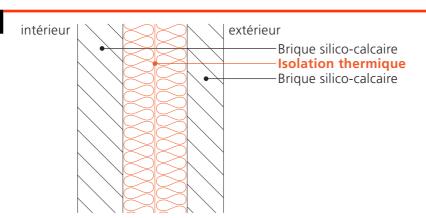
Cette construction es éléments de fixation


Cette construction est homogène, mais comprend des éléments de fixation métalliques. La majoration de la valeur ${\it U}$ se trouve dans le Catalogue des ponts thermiques.

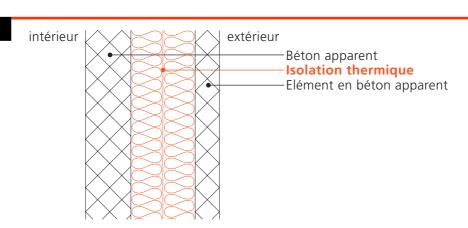
$\overline{\lambda}$	Epaisse	eur d'isola	ation, en	cm (au tot	al)			Valeur <i>U</i> en W/(m ² ⋅K)			
W/(m⋅K)	10	12	14	16	18	20	22	24	26	28	
0.050		0.37	0.32	0.28	0.25	0.23	0.21	0.19	0.18	0.17	
0.045	0.39	0.33	0.29	0.26	0.23	0.21	0.19	0.18	0.16	0.15	
0.040	0.35	0.30	0.26	0.23	0.21	0.19	0.17	0.16	0.15	0.14	
0.035	0.31	0.27	0.23	0.20	0.18	0.17	0.15	0.14	0.13	0.12	
0.030	0.27	0.23	0.20	0.18	0.16	0.14	0.13	0.12	0.11	0.10	
0.025	0.23	0.19	0.17	0.15	0.13	0.12	0.11	0.10	0.09	0.09	
0.020	0.19	0.16	0.14	0.12	0.11	0.10	0.09	0.08	0.07	0.07	


λ	Epaisse	eur d'isola	ation, en d	cm (au tot	tal)			Valeur <i>U</i> en W/(m²⋅K)			
W/(m·K)	10	12	14	16	18	20	22	24	26	28	
0.050			0.36	0.32	0.29	0.26	0.24	0.22	0.20	0.19	
0.045		0.38	0.33	0.29	0.26	0.24	0.22	0.20	0.19	0.18	
0.040		0.35	0.30	0.27	0.24	0.22	0.20	0.19	0.17	0.16	
0.035	0.37	0.32	0.28	0.25	0.22	0.20	0.18	0.17	0.16	0.15	
0.030	0.34	0.29	0.25	0.22	0.20	0.18	0.17	0.15	0.14	0.13	
0.025	0.30	0.25	0.22	0.20	0.18	0.16	0.15	0.13	0.13	0.12	
0.020	0.26	0.22	0.19	0.17	0.15	0.14	0.13	0.12	0.11	0.10	
0.020	0.20	0.22	0.15	0.17	0.15	0.14	0.15	0.12	0.11	0.10	

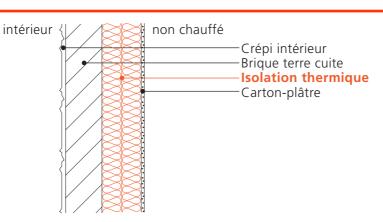
contre l'air extérieur, avec isolation intermédiaire



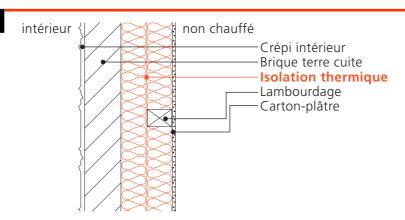
$\overline{\lambda}$	Epaisse	eur d'isol	ation, en	cm (au to	tal)			Valeur <i>U</i> en W/(m ² · K)			
W/(m·K)	6	8	10	12	14	16	18	20	22	24	
0.050			0.35	0.31	0.28	0.25	0.23	0.21	0.19	0.18	
0.045		0.38	0.33	0.29	0.25	0.23	0.21	0.19	0.17	0.16	
0.040		0.35	0.30	0.26	0.23	0.21	0.19	0.17	0.16	0.15	
0.035	0.39	0.32	0.27	0.23	0.21	0.19	0.17	0.15	0.14	0.13	
0.030	0.35	0.29	0.24	0.21	0.18	0.16	0.15	0.13	0.12	0.11	
0.025	0.31	0.25	0.21	0.18	0.16	0.14	0.12	0.11	0.10	0.10	
0.020	0.26	0.21	0.17	0.15	0.13	0.11	0.10	0.09	0.08	0.08	



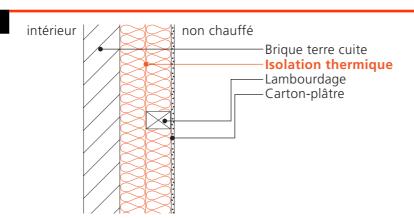
λ	Epaisse	eur d'isola		Valeur <i>U</i> en W/(m ² · K)						
W/(m·K)	6	8	10	12	14	16	18	20	22	24
0.050			0.36	0.32	0.28	0.25	0.23	0.21	0.19	0.18
0.045		0.39	0.34	0.29	0.26	0.23	0.21	0.19	0.18	0.16
0.040		0.36	0.31	0.27	0.24	0.21	0.19	0.17	0.16	0.15
0.035		0.33	0.28	0.24	0.21	0.19	0.17	0.15	0.14	0.13
0.030	0.36	0.29	0.24	0.21	0.18	0.16	0.15	0.13	0.12	0.11
0.025	0.32	0.25	0.21	0.18	0.16	0.14	0.13	0.11	0.10	0.10
0.020	0.27	0.21	0.17	0.15	0.13	0.11	0.10	0.09	0.09	0.08



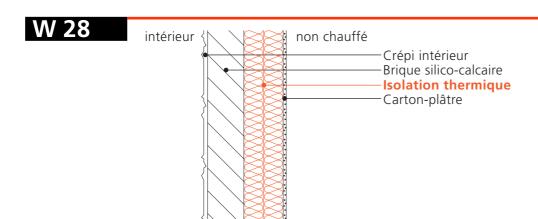
$\overline{\lambda}$	Epaisse	eur d'isol	ation, en d	cm (au to	tal)			Valeur <i>U</i> en W/(m ² ⋅K)			
W/(m·K)	6	8	10	12	14	16	18	20	22	24	
0.050				0.35	0.31	0.27	0.25	0.23	0.21	0.19	
0.045			0.38	0.32	0.28	0.25	0.23	0.20	0.19	0.17	
0.040			0.34	0.29	0.25	0.23	0.20	0.18	0.17	0.16	
0.035		0.37	0.30	0.26	0.23	0.20	0.18	0.16	0.15	0.14	
0.030		0.32	0.27	0.23	0.20	0.17	0.16	0.14	0.13	0.12	
0.025	0.35	0.27	0.23	0.19	0.17	0.15	0.13	0.12	0.11	0.10	
0.020	0.29	0.23	0.18	0.16	0.13	0.12	0.11	0.10	0.09	0.08	

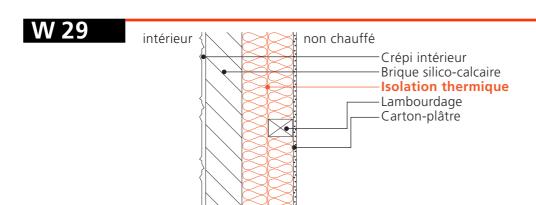

λ	Epaisse	eur d'isola		Valeur <i>U</i> en W/(m ² · K)						
W/(m·K)	6	8	10	12	14	16	18	20	22	24
0.050				0.37	0.32	0.29	0.26	0.23	0.21	0.20
0.045			0.40	0.34	0.29	0.26	0.23	0.21	0.19	0.18
0.040			0.36	0.30	0.26	0.23	0.21	0.19	0.17	0.16
0.035		0.39	0.32	0.27	0.23	0.21	0.18	0.17	0.15	0.14
0.030		0.34	0.28	0.23	0.20	0.18	0.16	0.14	0.13	0.12
0.025	0.37	0.29	0.23	0.20	0.17	0.15	0.13	0.12	0.11	0.10
0.020	0.30	0.23	0.19	0.16	0.14	0.12	0.11	0.10	0.09	0.08

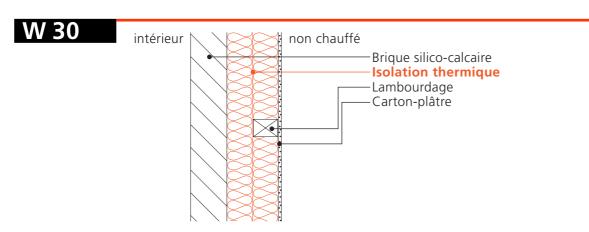
contre des locaux non chauffés

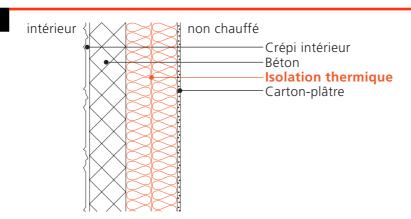


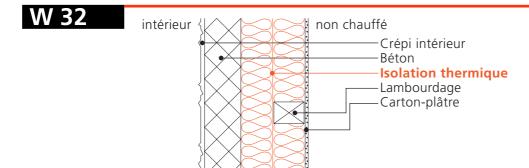
λ	Epaisse	eur d'isola		Valeur <i>U</i> en W/(m²⋅K)						
W/(m·K)	6	8	10	12	14	16	18	20	22	24
0.050	0.55	0.45	0.38	0.33	0.29	0.26	0.24	0.22	0.20	0.18
0.045	0.51	0.42	0.35	0.30	0.27	0.24	0.22	0.20	0.18	0.17
0.040	0.47	0.38	0.32	0.28	0.24	0.22	0.20	0.18	0.16	0.15
0.035	0.43	0.34	0.29	0.25	0.22	0.19	0.17	0.16	0.14	0.13
0.030	0.38	0.30	0.25	0.22	0.19	0.17	0.15	0.14	0.13	0.12
0.025	0.33	0.26	0.22	0.18	0.16	0.14	0.13	0.12	0.11	0.10
0.020	0.28	0.22	0.18	0.15	0.13	0.12	0.10	0.09	0.09	0.08



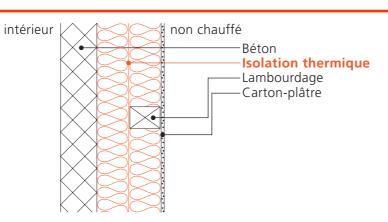

λ	Epaisse	eur d'isola	ation, en d	cm (au to	tal)			Valeur <i>U</i> en W/(m²⋅K)			
W/(m·K)	6	8	10	12	14	16	18	20	22	24	
0.050	0.59	0.49	0.42	0.36	0.32	0.29	0.26	0.24	0.22	0.21	
0.045	0.56	0.46	0.39	0.34	0.30	0.27	0.24	0.22	0.21	0.19	
0.040	0.52	0.43	0.36	0.32	0.28	0.25	0.23	0.21	0.19	0.18	
0.035	0.49	0.40	0.33	0.29	0.26	0.23	0.21	0.19	0.17	0.16	
0.030	0.44	0.36	0.30	0.26	0.23	0.21	0.19	0.17	0.16	0.14	
0.025	0.40	0.32	0.27	0.23	0.21	0.18	0.17	0.15	0.14	0.13	
0.020	0.35	0.28	0.24	0.20	0.18	0.16	0.14	0.13	0.12	0.11	


$\overline{\lambda}$	Epaisse	eur d'isola		Valeur <i>U</i> en W/(m ² ⋅K)						
W/(m·K)	6	8	10	12	14	16	18	20	22	24
0.050	0.60	0.49	0.42	0.37	0.32	0.29	0.26	0.24	0.22	0.21
0.045	0.56	0.46	0.39	0.34	0.30	0.27	0.25	0.23	0.21	0.19
0.040	0.53	0.43	0.37	0.32	0.28	0.25	0.23	0.21	0.19	0.18
0.035	0.49	0.40	0.34	0.29	0.26	0.23	0.21	0.19	0.17	0.16
0.030	0.45	0.36	0.31	0.26	0.23	0.21	0.19	0.17	0.16	0.15
0.025	0.41	0.33	0.27	0.24	0.21	0.18	0.17	0.15	0.14	0.13
0.020	0.36	0.29	0.24	0.21	0.18	0.16	0.15	0.13	0.12	0.11

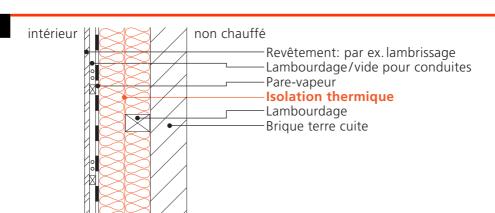

W/(m·K) 6 0.050 0.60	ur d'isola		Valeur <i>U</i> en W/(m ² ⋅K)						
0.050 0.60	8	10	12	14	16	18	20	22	24
	0.48	0.40	0.35	0.31	0.27	0.25	0.22	0.21	0.19
0.045 0.55	0.44	0.37	0.32	0.28	0.25	0.22	0.20	0.19	0.17
0.040 0.51	0.40	0.34	0.29	0.25	0.22	0.20	0.18	0.17	0.15
0.035 0.46	0.36	0.30	0.26	0.22	0.20	0.18	0.16	0.15	0.14
0.030 0.40	0.32	0.26	0.22	0.19	0.17	0.15	0.14	0.13	0.12
0.025 0.35	0.27	0.22	0.19	0.16	0.15	0.13	0.12	0.11	0.10
0.020 0.29	0.27	0.22	0.19	0.10	0.15	0.15	0.12	0.11	0.10


$\overline{\lambda}$	Epaisse	ur d'isola		Valeur <i>U</i> en W/(m ² · K)						
W/(m·K)	6	8	10	12	14	16	18	20	22	24
0.050		0.53	0.45	0.39	0.34	0.30	0.27	0.25	0.23	0.21
0.045		0.50	0.42	0.36	0.32	0.28	0.26	0.23	0.21	0.20
0.040	0.57	0.46	0.39	0.33	0.29	0.26	0.23	0.21	0.20	0.18
0.035	0.53	0.42	0.35	0.30	0.27	0.24	0.21	0.19	0.18	0.17
0.030	0.48	0.38	0.32	0.27	0.24	0.21	0.19	0.18	0.16	0.15
0.025	0.43	0.34	0.29	0.24	0.21	0.19	0.17	0.16	0.14	0.13
0.020	0.38	0.30	0.25	0.21	0.19	0.17	0.15	0.14	0.12	0.11

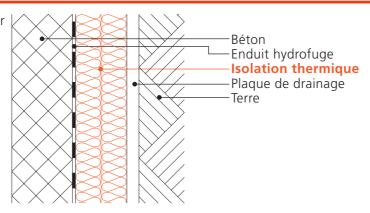
$\overline{\lambda}$	Epaisse	eur d'isola		Valeur <i>U</i> en W/(m²⋅K)						
W/(m⋅K)	6	8	10	12	14	16	18	20	22	24
0.050		0.54	0.45	0.39	0.34	0.31	0.28	0.25	0.23	0.21
0.045		0.50	0.42	0.36	0.32	0.28	0.26	0.23	0.21	0.20
0.040	0.58	0.46	0.39	0.33	0.29	0.26	0.24	0.22	0.20	0.18
0.035	0.53	0.43	0.36	0.31	0.27	0.24	0.22	0.20	0.18	0.17
0.030	0.49	0.39	0.32	0.28	0.24	0.22	0.19	0.18	0.16	0.15
0.025	0.44	0.35	0.29	0.25	0.22	0.19	0.17	0.16	0.14	0.13
0.020	0.38	0.30	0.25	0.21	0.19	0.17	0.15	0.14	0.12	0.11



λ	Epaisse	eur d'isola		Valeur U en W/(m²⋅K)						
W/(m·K)	6	8	10	12	14	16	18	20	22	24
0.050		0.49	0.41	0.35	0.31	0.28	0.25	0.23	0.21	0.19
0.045	0.57	0.45	0.38	0.32	0.28	0.25	0.23	0.20	0.19	0.17
0.040	0.52	0.41	0.34	0.29	0.25	0.23	0.20	0.18	0.17	0.16
0.035	0.47	0.37	0.30	0.26	0.23	0.20	0.18	0.16	0.15	0.14
0.030	0.41	0.32	0.27	0.23	0.20	0.17	0.16	0.14	0.13	0.12
0.025	0.35	0.28	0.23	0.19	0.17	0.15	0.13	0.12	0.11	0.10
0.020	0.29	0.23	0.18	0.16	0.13	0.12	0.11	0.10	0.09	0.08


$\overline{\lambda}$	Epaisse	eur d'isola		Valeur <i>U</i> en W/(m ² ⋅K)						
W/(m⋅K)	6	8	10	12	14	16	18	20	22	24
0.050		0.54	0.45	0.39	0.34	0.31	0.28	0.25	0.23	0.22
0.045		0.50	0.42	0.36	0.32	0.29	0.26	0.23	0.22	0.20
0.040	0.58	0.47	0.39	0.34	0.30	0.26	0.24	0.22	0.20	0.18
0.035	0.54	0.43	0.36	0.31	0.27	0.24	0.22	0.20	0.18	0.17
0.030	0.49	0.39	0.32	0.28	0.24	0.22	0.19	0.18	0.16	0.15
0.025	0.44	0.35	0.29	0.25	0.22	0.19	0.17	0.16	0.14	0.13
0.020	0.38	0.30	0.25	0.22	0.19	0.17	0.15	0.14	0.12	0.12

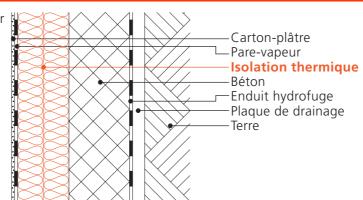
$\overline{\lambda}$	Epaisse	eur d'isola		Valeur <i>U</i> en W/(m ² · K)						
W/(m·K)	6	8	10	12	14	16	18	20	22	24
0.050		0.55	0.46	0.40	0.35	0.31	0.28	0.25	0.23	0.22
0.045		0.51	0.43	0.37	0.32	0.29	0.26	0.24	0.22	0.20
0.040	0.59	0.47	0.40	0.34	0.30	0.26	0.24	0.22	0.20	0.18
0.035	0.54	0.43	0.36	0.31	0.27	0.24	0.22	0.20	0.18	0.17
0.030	0.50	0.39	0.33	0.28	0.24	0.22	0.20	0.18	0.16	0.15
0.025	0.44	0.35	0.29	0.25	0.22	0.19	0.17	0.16	0.14	0.13
0.020	0.39	0.31	0.25	0.22	0.19	0.17	0.15	0.14	0.13	0.12

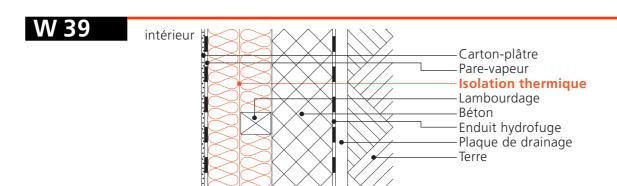


λ	Epaisse	ur d'isola		Valeur <i>U</i> en W/(m ² · K)						
W/(m⋅K)	6	8	10	12	14	16	18	20	22	24
0.050	0.53	0.45	0.39	0.34	0.30	0.28	0.25	0.23	0.21	0.20
0.045	0.51	0.42	0.36	0.32	0.29	0.26	0.23	0.21	0.20	0.18
0.040	0.48	0.40	0.34	0.30	0.26	0.24	0.22	0.20	0.18	0.17
0.035	0.45	0.37	0.31	0.27	0.24	0.22	0.20	0.18	0.17	0.16
0.030	0.41	0.34	0.29	0.25	0.22	0.20	0.18	0.16	0.15	0.14
0.025	0.37	0.30	0.26	0.22	0.20	0.18	0.16	0.15	0.13	0.12
0.020	0.33	0.27	0.23	0.20	0.17	0.15	0.14	0.13	0.12	0.11

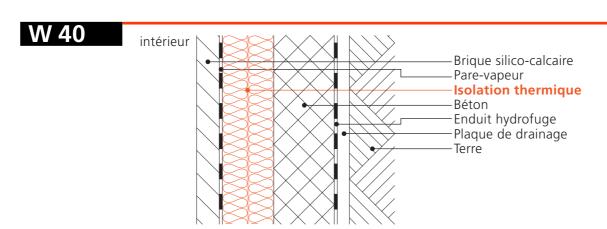
contre terre

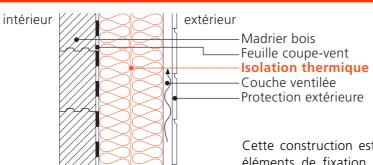
W 37


intérieur

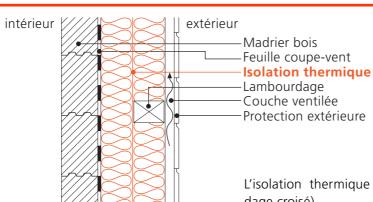

$\overline{\lambda}$	Epaisse	eur d'isola		Valeur <i>U</i> en W/(m ² ⋅K)						
W/(m·K)	6	8	10	12	14	16	18	20	22	24
0.050		0.54	0.45	0.38	0.33	0.29	0.26	0.24	0.22	0.20
0.045		0.50	0.41	0.34	0.30	0.26	0.24	0.21	0.19	0.18
0.040	0.57	0.45	0.36	0.31	0.27	0.24	0.21	0.19	0.17	0.16
0.035	0.51	0.40	0.32	0.27	0.24	0.21	0.19	0.17	0.15	0.14
0.030	0.45	0.34	0.28	0.24	0.20	0.18	0.16	0.14	0.13	0.12
0.025	0.38	0.29	0.24	0.20	0.17	0.15	0.13	0.12	0.11	0.10
0.020	0.31	0.24	0.19	0.16	0.14	0.12	0.11	0.10	0.09	0.08

W 38


intérieur

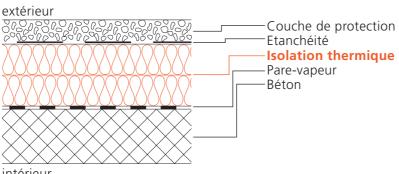

λ	Epaisse	eur d'isola		Valeur <i>U</i> en W/(m²⋅K)						
W/(m·K)	6	8	10	12	14	16	18	20	22	24
0.050		0.52	0.43	0.37	0.32	0.28	0.25	0.23	0.21	0.19
0.045	0.60	0.47	0.39	0.33	0.29	0.26	0.23	0.21	0.19	0.18
0.040	0.54	0.43	0.35	0.30	0.26	0.23	0.21	0.19	0.17	0.16
0.035	0.49	0.38	0.31	0.27	0.23	0.20	0.18	0.17	0.15	0.14
0.030	0.43	0.33	0.27	0.23	0.20	0.18	0.16	0.14	0.13	0.12
0.025	0.37	0.28	0.23	0.19	0.17	0.15	0.13	0.12	0.11	0.10
0.020	0.30	0.23	0.19	0.16	0.14	0.12	0.11	0.10	0.09	0.08

$\overline{\lambda}$	Epaisse	eur d'isol		Valeur <i>U</i> en W/(m²⋅K)						
W/(m·K)	6	8	10	12	14	16	18	20	22	24
0.050		0.57	0.48	0.41	0.36	0.32	0.29	0.26	0.24	0.22
0.045		0.53	0.44	0.38	0.33	0.29	0.26	0.24	0.22	0.20
0.040		0.49	0.41	0.35	0.30	0.27	0.24	0.22	0.20	0.19
0.035	0.57	0.45	0.37	0.32	0.28	0.25	0.22	0.20	0.18	0.17
0.030	0.52	0.41	0.34	0.29	0.25	0.22	0.20	0.18	0.17	0.15
0.025	0.46	0.36	0.30	0.25	0.22	0.20	0.18	0.16	0.15	0.13
0.020	0.40	0.32	0.26	0.22	0.19	0.17	0.15	0.14	0.13	0.12


λ	Epaisse	eur d'isola		Valeur U en W/(m ² · K)						
W/(m·K)	6	8	10	12	14	16	18	20	22	24
0.050		0.51	0.43	0.36	0.32	0.28	0.25	0.23	0.21	0.19
0.045	0.60	0.47	0.39	0.33	0.29	0.26	0.23	0.21	0.19	0.18
0.040	0.54	0.43	0.35	0.30	0.26	0.23	0.21	0.19	0.17	0.16
0.035	0.49	0.38	0.31	0.27	0.23	0.20	0.18	0.17	0.15	0.14
0.030	0.43	0.33	0.27	0.23	0.20	0.18	0.16	0.14	0.13	0.12
0.025	0.36	0.28	0.23	0.19	0.17	0.15	0.13	0.12	0.11	0.10
0.020	0.30	0.23	0.19	0.16	0.14	0.12	0.11	0.10	0.09	0.08

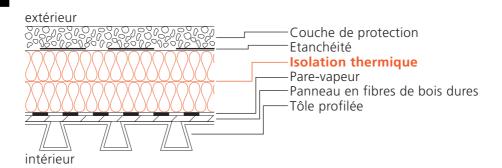
Cette construction est homogène, mais comprend des éléments de fixation métalliques. La majoration de la valeur \boldsymbol{U} se trouve dans le Catalogue des ponts thermiques.

$\overline{\lambda}$	Epaisse	ur d'isola		Valeur <i>U</i> en W/(m²⋅K)						
W/(m·K)	10	12	14	16	18	20	22	24	26	28
0.050	0.32	0.28	0.26	0.23	0.21	0.20	0.18	0.17	0.16	0.15
0.045	0.30	0.26	0.24	0.21	0.20	0.18	0.17	0.16	0.15	0.14
0.040	0.28	0.24	0.22	0.20	0.18	0.16	0.15	0.14	0.13	0.12
0.035	0.25	0.22	0.20	0.18	0.16	0.15	0.14	0.13	0.12	0.11
0.030	0.22	0.20	0.17	0.16	0.14	0.13	0.12	0.11	0.10	0.10
0.025	0.20	0.17	0.15	0.13	0.12	0.11	0.10	0.09	0.09	0.08
0.020	0.16	0.14	0.12	0.11	0.10	0.09	0.08	0.08	0.07	0.07

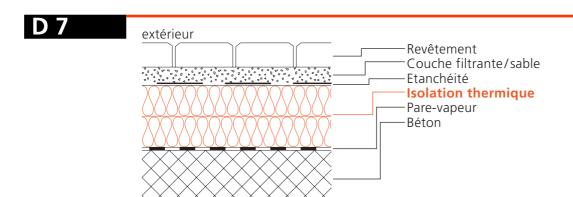


L'isolation thermique est inhomogène (avec lambour-dage croisé).

	10 .34 0	12	14	16	18	20				Valeur <i>U</i> en W/(m²⋅K)				
0.050	.34 0	24 0			10	20	22	24	26	28				
0.050 0		.31 0).28	0.25	0.23	0.21	0.20	0.19	0.18	0.17				
0.045 0	.33 0	.29 0).26	0.24	0.22	0.20	0.19	0.17	0.16	0.15				
0.040 0	.31 0	.27 0).24	0.22	0.20	0.19	0.17	0.16	0.15	0.14				
0.035	.28 0	.25 0).22	0.20	0.19	0.17	0.16	0.15	0.14	0.13				
0.030 0	.26 0	.23 0).21	0.19	0.17	0.16	0.14	0.13	0.13	0.12				
0.025 0	.24 0	.21 0).18	0.17	0.15	0.14	0.13	0.12	0.11	0.10				
0.020 0	.21 0	.18 0).16	0.15	0.13	0.12	0.11	0.10	0.10	0.09				

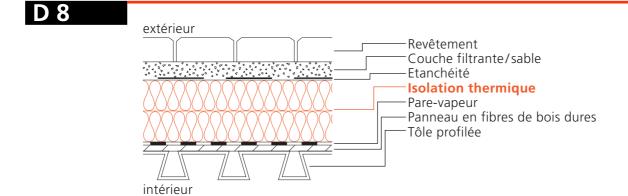

4.1.3 Toitures et dalles

Toitures contre l'air extérieur

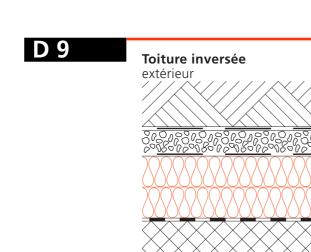


		ie	

$\overline{\lambda}$	Epaisse	eur d'isola	ation, en	m (au to	tal)			Valeur <i>U</i> en W/(m²⋅K)			
W/(m⋅K)	10	12	14	16	18	20	22	24	26	28	
0.050		0.37	0.32	0.28	0.25	0.23	0.21	0.20	0.18	0.17	
0.045	0.39	0.33	0.29	0.26	0.23	0.21	0.19	0.18	0.16	0.15	
0.040	0.35	0.30	0.26	0.23	0.21	0.19	0.17	0.16	0.15	0.14	
0.035	0.31	0.27	0.23	0.20	0.18	0.17	0.15	0.14	0.13	0.12	
0.030	0.27	0.23	0.20	0.18	0.16	0.14	0.13	0.12	0.11	0.10	
0.025	0.23	0.20	0.17	0.15	0.13	0.12	0.11	0.10	0.09	0.09	
0.020	0.19	0.16	0.14	0.12	0.11	0.10	0.09	0.08	0.08	0.07	



$\overline{\lambda}$	Epaisse	eur d'isol	Valeur <i>U</i> en W/(m² · K)							
W/(m⋅K)	10	12	14	16	18	20	22	24	26	28
0.050		0.37	0.32	0.28	0.25	0.23	0.21	0.20	0.18	0.17
0.045	0.39	0.33	0.29	0.26	0.23	0.21	0.19	0.18	0.16	0.15
0.040	0.35	0.30	0.26	0.23	0.21	0.19	0.17	0.16	0.15	0.14
0.035	0.31	0.27	0.23	0.20	0.18	0.17	0.15	0.14	0.13	0.12
0.030	0.27	0.23	0.20	0.18	0.16	0.14	0.13	0.12	0.11	0.10
0.025	0.23	0.20	0.17	0.15	0.13	0.12	0.11	0.10	0.09	0.09
0.020	0.19	0.16	0.14	0.12	0.11	0.10	0.09	0.08	0.08	0.07



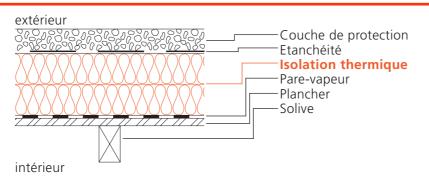
intérieur

$\overline{\lambda}$	Epaisse	eur d'isol	ation, en	cm (au to	tal)			Valeur <i>U</i> en W/(m²⋅K)			
W/(m⋅K)	10	12	14	16	18	20	22	24	26	28	
0.050		0.37	0.32	0.28	0.26	0.23	0.21	0.20	0.18	0.17	
0.045	0.39	0.33	0.29	0.26	0.23	0.21	0.19	0.18	0.16	0.15	
0.040	0.35	0.30	0.26	0.23	0.21	0.19	0.17	0.16	0.15	0.14	
0.035	0.31	0.27	0.23	0.20	0.18	0.17	0.15	0.14	0.13	0.12	
0.030	0.27	0.23	0.20	0.18	0.16	0.14	0.13	0.12	0.11	0.10	
0.025	0.23	0.20	0.17	0.15	0.13	0.12	0.11	0.10	0.09	0.09	
0.020	n 19	0.16	0.14	0.12	0.11	0.10	0.09	0.08	0.08	0.07	

$\overline{\lambda}$	Epaisse	eur d'isol		Valeur <i>U</i> en W/(m²⋅K)						
W/(m·K)	10	12	14	16	18	20	22	24	26	28
0.050		0.37	0.32	0.29	0.26	0.23	0.21	0.20	0.18	0.17
0.045	0.40	0.34	0.29	0.26	0.23	0.21	0.19	0.18	0.16	0.15
0.040	0.36	0.30	0.26	0.23	0.21	0.19	0.17	0.16	0.15	0.14
0.035	0.32	0.27	0.23	0.21	0.18	0.17	0.15	0.14	0.13	0.12
0.030	0.28	0.23	0.20	0.18	0.16	0.14	0.13	0.12	0.11	0.10
0.025	0.23	0.20	0.17	0.15	0.13	0.12	0.11	0.10	0.09	0.09
0.020	0.19	0.16	0.14	0.12	0.11	0.10	0.09	0.08	0.08	0.07
0.020	0.19	0.16	0.14	0.12	0.11	0.10	0.09	0.08	0.08	0.07

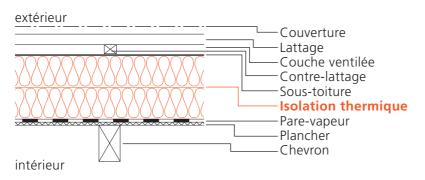
-Non tissé -**Isolation thermique**

−Pare-vapeur −Béton

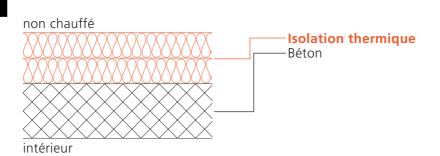

Substrat avec végétalisation Non tissé filtrant Couche de drainage

intérieur

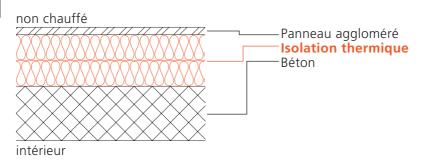
* Majoration de 20% incluse (chap. 2.5)


$\overline{\lambda}$	Epaisse	eur d'isol	Valeur <i>U</i> en W/(m²⋅K)*							
W/(m·K)	10	12	14	16	18	20	22	24	26	28
0.050			0.38	0.33	0.30	0.27	0.25	0.23	0.21	0.20
0.045		0.39	0.34	0.30	0.27	0.25	0.23	0.21	0.19	0.18
0.040		0.35	0.31	0.27	0.25	0.22	0.20	0.19	0.17	0.16
0.035	0.37	0.31	0.27	0.24	0.22	0.20	0.18	0.17	0.15	0.14
0.030	0.32	0.27	0.24	0.21	0.19	0.17	0.16	0.14	0.13	0.12
0.025	0.27	0.23	0.20	0.18	0.16	0.14	0.13	0.12	0.11	0.10
0.020	0.22	0.19	0.16	0.14	0.13	0.12	0.11	0.10	0.09	0.08

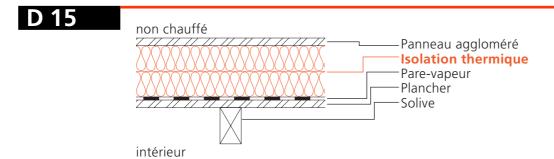
$\overline{\lambda}$	Epaisse	eur d'isola		Valeur <i>U</i> en W/(m²⋅K)						
W/(m·K)	10	12	14	16	18	20	22	24	26	28
0.050		0.35	0.31	0.28	0.25	0.23	0.21	0.19	0.18	0.17
0.045	0.38	0.32	0.28	0.25	0.23	0.21	0.19	0.17	0.16	0.15
0.040	0.34	0.29	0.25	0.23	0.20	0.18	0.17	0.16	0.14	0.13
0.035	0.30	0.26	0.23	0.20	0.18	0.16	0.15	0.14	0.13	0.12
0.030	0.27	0.23	0.20	0.17	0.16	0.14	0.13	0.12	0.11	0.10
0.025	0.23	0.19	0.17	0.15	0.13	0.12	0.11	0.10	0.09	0.09
0.020	0.18	0.16	0.13	0.12	0.11	0.10	0.09	0.08	0.07	0.07
0.020	0.10	0.10	0.15	0.12	0.11	0.10	0.05	0.00	0.07	0.07



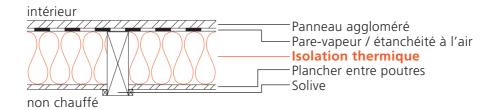
$\overline{\lambda}$	Epaisse	eur d'isola		Valeur <i>U</i> en W/(m ² ⋅K)						
W/(m⋅K)	10	12	14	16	18	20	22	24	26	28
0.050		0.36	0.31	0.28	0.25	0.23	0.21	0.19	0.18	0.17
0.045	0.38	0.33	0.28	0.25	0.23	0.21	0.19	0.17	0.16	0.15
0.040	0.34	0.29	0.26	0.23	0.20	0.19	0.17	0.16	0.14	0.14
0.035	0.31	0.26	0.23	0.20	0.18	0.16	0.15	0.14	0.13	0.12
0.030	0.27	0.23	0.20	0.17	0.16	0.14	0.13	0.12	0.11	0.10
0.025	0.23	0.19	0.17	0.15	0.13	0.12	0.11	0.10	0.09	0.09
0.020	0.19	0.16	0.14	0.12	0.11	0.10	0.09	0.08	0.07	0.07


Dalles contre des locaux non chauffés

D 12

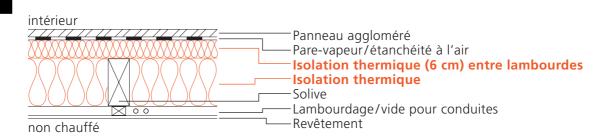


λ	Epaisse	eur d'isola	ation, en d		Valeur <i>U</i> en W/(m²⋅K)					
W/(m·K)	10	12	14	16	18	20	22	24	26	28
0.050		0.36	0.31	0.28	0.25	0.23	0.21	0.19	0.18	0.17
0.045	0.38	0.33	0.29	0.25	0.23	0.21	0.19	0.18	0.16	0.15
0.040	0.35	0.30	0.26	0.23	0.21	0.19	0.17	0.16	0.15	0.14
0.035	0.31	0.26	0.23	0.20	0.18	0.16	0.15	0.14	0.13	0.12
0.030	0.27	0.23	0.20	0.18	0.16	0.14	0.13	0.12	0.11	0.10
0.025	0.23	0.19	0.17	0.15	0.13	0.12	0.11	0.10	0.09	0.09
0.020	0.19	0.16	0.14	0.12	0.11	0.10	0.09	0.08	0.07	0.07

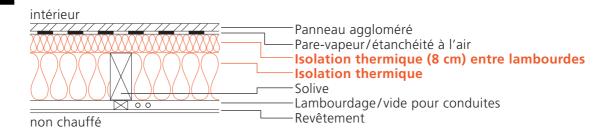

$\overline{\lambda}$	Epaisse	eur d'isol	Valeur <i>U</i> en W/(m²⋅K)							
W/(m⋅K)	10	12	14	16	18	20	22	24	26	28
0.050	0.39	0.34	0.30	0.27	0.24	0.22	0.20	0.19	0.17	0.16
0.045	0.36	0.31	0.27	0.24	0.22	0.20	0.18	0.17	0.16	0.15
0.040	0.33	0.28	0.25	0.22	0.20	0.18	0.17	0.15	0.14	0.13
0.035	0.30	0.25	0.22	0.20	0.18	0.16	0.15	0.14	0.13	0.12
0.030	0.26	0.22	0.19	0.17	0.15	0.14	0.13	0.12	0.11	0.10
0.025	0.22	0.19	0.16	0.14	0.13	0.12	0.11	0.10	0.09	0.09
0.020	0.18	0.15	0.13	0.12	0.10	0.09	0.09	0.08	0.07	0.07

$\overline{\lambda}$	Epaisse	eur d'isola	ation, en	cm (au to	tal)			Valeur <i>U</i> en W/(m ² · K)			
W/(m·K)	10	12	14	16	18	20	22	24	26	28	
0.050	0.39	0.34	0.30	0.27	0.24	0.22	0.20	0.19	0.17	0.16	
0.045	0.36	0.31	0.27	0.24	0.22	0.20	0.18	0.17	0.16	0.15	
0.040	0.33	0.28	0.25	0.22	0.20	0.18	0.17	0.15	0.14	0.13	
0.035	0.29	0.25	0.22	0.20	0.18	0.16	0.15	0.13	0.13	0.12	
0.030	0.26	0.22	0.19	0.17	0.15	0.14	0.13	0.12	0.11	0.10	
0.025	0.22	0.19	0.16	0.14	0.13	0.12	0.11	0.10	0.09	0.09	
0.020	0.18	0.15	0.13	0.12	0.10	0.09	0.09	0.08	0.07	0.07	

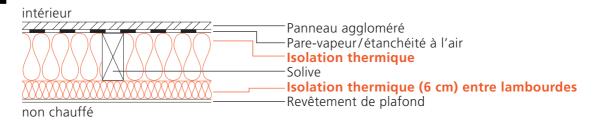
4.2.1 Planchers


Bi 2

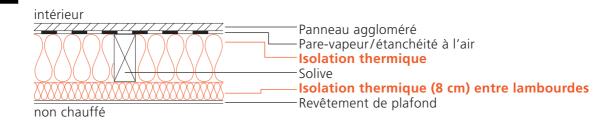
$\overline{\lambda}$	Epaisse	eur d'isola		Valeur <i>U</i> en W/(m ² ⋅K)						
W/(m⋅K)	6	8	10	12	14	16	18	20	22	24
0.050		0.56	0.47	0.41	0.37	0.33	0.30	0.27	0.25	0.23
0.045		0.53	0.45	0.39	0.35	0.31	0.28	0.26	0.24	0.22
0.040		0.50	0.42	0.37	0.32	0.29	0.26	0.24	0.22	0.21
0.035	0.57	0.47	0.40	0.34	0.30	0.27	0.25	0.22	0.21	0.19
0.030	0.53	0.43	0.37	0.32	0.28	0.25	0.23	0.21	0.19	0.18
0.025	0.49	0.40	0.34	0.29	0.26	0.23	0.21	0.19	0.17	0.16
0.020	0.45	0.36	0.31	0.26	0.23	0.21	0.19	0.17	0.16	0.15


Compléments à l'édition de 1989

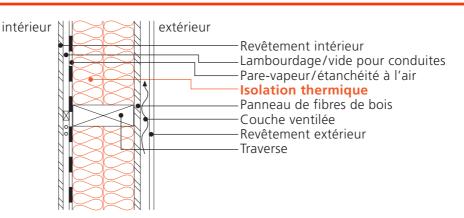
Bi 3


λ	Epaisse	eur d'isola	ation, en d	m (que la	couche c	d'épaisseu	r variable)	Valeu	ır <i>U</i> en W/	(m ² · K)
W/(m·K)	6	8	10	12	14	16	18	20	22	24
0.050	0.40	0.35	0.31	0.28	0.26	0.24	0.22	0.20	0.19	0.18
0.045	0.37	0.33	0.29	0.26	0.24	0.22	0.20	0.19	0.18	0.17
0.040	0.35	0.31	0.27	0.24	0.22	0.20	0.19	0.18	0.16	0.15
0.035	0.32	0.28	0.25	0.23	0.21	0.19	0.17	0.16	0.15	0.14
0.030	0.30	0.26	0.23	0.21	0.19	0.17	0.16	0.15	0.14	0.13
0.025	0.27	0.24	0.21	0.19	0.17	0.15	0.14	0.13	0.12	0.12
0.020	0.24	0.21	0.19	0.17	0.15	0.14	0.13	0.12	0.11	0.10

Bi 4

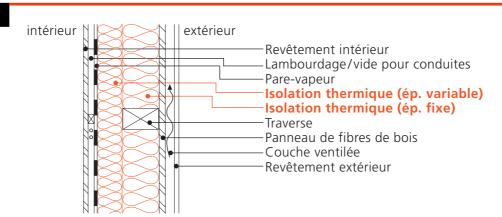

$\overline{\lambda}$	Epaisse	eur d'isola	ation, en	cm (que la	couche c	l'épaisseu	ır variable)	Valeu	ır <i>U</i> en W/	(m ² · K)
W/(m·K)	6	8	10	12	14	16	18	20	22	24
0.050	0.35	0.32	0.28	0.26	0.24	0.22	0.20	0.19	0.18	0.17
0.045	0.33	0.30	0.27	0.24	0.22	0.21	0.19	0.18	0.17	0.16
0.040	0.31	0.28	0.25	0.23	0.21	0.19	0.18	0.17	0.15	0.15
0.035	0.29	0.26	0.23	0.21	0.19	0.18	0.16	0.15	0.14	0.13
0.030	0.27	0.23	0.21	0.19	0.17	0.16	0.15	0.14	0.13	0.12
0.025	0.24	0.21	0.19	0.17	0.16	0.15	0.13	0.13	0.12	0.11
0.020	0.22	0.19	0.17	0.15	0.14	0.13	0.12	0.11	0.10	0.10

Bi 5


$\overline{\lambda}$	Epaisse	eur d'isol	ation, en	cm (que la	couche d	d'épaisseu	ır variable)	Valeu	ır <i>U</i> en W/	(m ² · K)
W/(m⋅K)	6	8	10	12	14	16	18	20	22	24
0.050		0.37	0.34	0.30	0.28	0.26	0.24	0.22	0.21	0.19
0.045	0.40	0.35	0.31	0.28	0.26	0.24	0.22	0.21	0.19	0.18
0.040	0.37	0.32	0.29	0.26	0.24	0.22	0.20	0.19	0.18	0.17
0.035	0.34	0.30	0.27	0.24	0.22	0.20	0.19	0.17	0.16	0.15
0.030	0.31	0.27	0.24	0.22	0.20	0.18	0.17	0.16	0.15	0.14
0.025	0.27	0.24	0.22	0.20	0.18	0.17	0.15	0.14	0.13	0.13
0.020	0.24	0.21	0.19	0.17	0.16	0.15	0.14	0.13	0.12	0.11

Bi 6

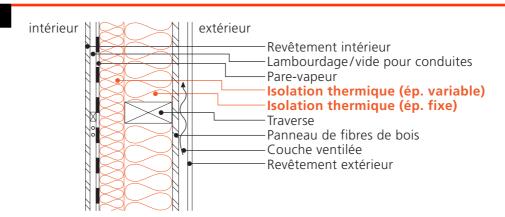
$\overline{\lambda}$	Epaisse	eur d'isola	ation, en e	cm (que la	couche c	d'épaisseu	ır variable)	Valeu	r <i>U</i> en W/	(m²·K)
W/(m⋅K)	6	8	10	12	14	16	18	20	22	24
0.050	0.37	0.33	0.30	0.27	0.25	0.23	0.22	0.20	0.19	0.18
0.045	0.34	0.31	0.28	0.26	0.24	0.22	0.20	0.19	0.18	0.17
0.040	0.32	0.29	0.26	0.24	0.22	0.20	0.19	0.18	0.17	0.16
0.035	0.29	0.26	0.24	0.22	0.20	0.18	0.17	0.16	0.15	0.14
0.030	0.26	0.24	0.21	0.20	0.18	0.17	0.16	0.15	0.14	0.13
0.025	0.24	0.21	0.19	0.18	0.16	0.15	0.14	0.13	0.12	0.12
0.020	0.21	0.19	0.17	0.15	0.14	0.13	0.12	0.12	0.11	0.10


Wi 1

$\overline{\lambda}$	Epaisse	eur d'isol	ation, en	cm (au to	tal)			Valeur U en W/(m ² · K)			
W/(m·K)	12	14	16	18	20	22	24	26	28	30	
0.050	0.37	0.33	0.30	0.27	0.25	0.23	0.21	0.20	0.19	0.18	
0.045	0.35	0.31	0.28	0.25	0.23	0.21	0.20	0.19	0.17	0.16	
0.040	0.33	0.29	0.26	0.24	0.22	0.20	0.19	0.17	0.16	0.15	
0.035	0.30	0.27	0.24	0.22	0.20	0.18	0.17	0.16	0.15	0.14	
0.030	0.28	0.25	0.22	0.20	0.18	0.17	0.16	0.15	0.14	0.13	
0.025	0.25	0.22	0.20	0.18	0.16	0.15	0.14	0.13	0.12	0.12	
0.020	0.22	0.20	0.18	0.16	0.15	0.13	0.12	0.12	0.11	0.10	

Compléments à l'édition de 1989

Wi 2



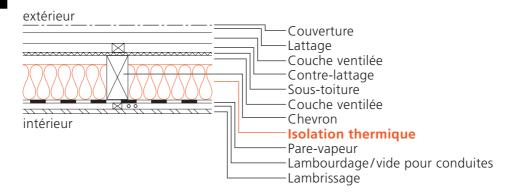
$\overline{\lambda}$	Epaisse	Valeu	Valeur <i>U</i> en W/(m ² ⋅ K)							
W/(m⋅K)	4	6	8	10	12	4	6	8	10	12
0.050	0.31	0.28	0.26	0.24	0.22	0.28	0.26	0.24	0.22	0.20
0.045	0.29	0.26	0.24	0.22	0.20	0.27	0.24	0.22	0.20	0.19
0.040	0.27	0.25	0.22	0.20	0.19	0.25	0.22	0.21	0.19	0.18
0.035	0.25	0.23	0.21	0.19	0.17	0.23	0.21	0.19	0.17	0.16
0.030	0.23	0.21	0.19	0.17	0.16	0.21	0.19	0.17	0.16	0.15
0.025	0.21	0.19	0.17	0.15	0.14	0.19	0.17	0.16	0.14	0.13
0.020	0.18	0.16	0.15	0.14	0.13	0.17	0.15	0.14	0.13	0.12

Epaisseur d'isolation fixe de 12 cm

Epaisseur d'isolation fixe de 14 cm

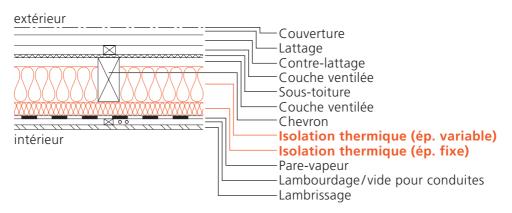
Wi 3

$\overline{\lambda}$	Epaisse	ur d'isola	ation, en d	cm (que la	couche c	d'épaisseu	ır variable)	Valeu	ır <i>U</i> en W/	(m²·K)
W/(m·K)	4	6	8	10	12	4	6	8	10	12
0.050	0.25	0.23	0.21	0.20	0.19	0.23	0.21	0.20	0.19	0.18
0.045	0.23	0.21	0.20	0.19	0.17	0.21	0.20	0.19	0.17	0.16
0.040	0.21	0.20	0.18	0.17	0.16	0.20	0.18	0.17	0.16	0.15
0.035	0.20	0.18	0.17	0.16	0.15	0.18	0.17	0.16	0.15	0.14
0.030	0.18	0.16	0.15	0.14	0.13	0.16	0.15	0.14	0.13	0.12
0.025	0.16	0.14	0.13	0.13	0.12	0.14	0.13	0.12	0.12	0.11
0.020	0.14	0.13	0.12	0.11	0.10	0.13	0.12	0.11	0.10	0.10


Epaisseur d'isolation fixe de 16 cm

Epaisseur d'isolation fixe de 18 cm

4.2.3 Toitures et dalles


Toitures contre l'air extérieur

Di 1

$\overline{\lambda}$	Epaisse	eur d'isola	ation, en	cm				Valeur <i>U</i> en W/(m ² · K)			
W/(m·K)	10	12	14	16	18	20	22	24	26	28	
0.050		0.40	0.35	0.32	0.29	0.26	0.24	0.22	0.21	0.20	
0.045		0.37	0.33	0.30	0.27	0.25	0.23	0.21	0.19	0.18	
0.040	0.40	0.35	0.31	0.28	0.25	0.23	0.21	0.19	0.18	0.17	
0.035	0.37	0.32	0.29	0.25	0.23	0.21	0.19	0.18	0.17	0.16	
0.030	0.34	0.30	0.26	0.23	0.21	0.19	0.18	0.16	0.15	0.14	
0.025	0.31	0.27	0.24	0.21	0.19	0.17	0.16	0.15	0.14	0.13	
0.020	0.28	0.24	0.21	0.19	0.17	0.16	0.14	0.13	0.12	0.11	

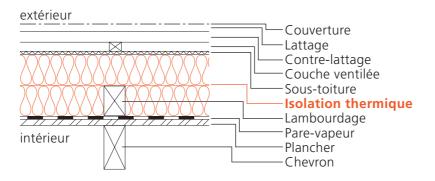
Di 2

$\overline{\lambda}$	Epaisse	eur d'isola	ation, en	cm (que la	couche c	d'épaisseu	ır variable)	Valeu	ır <i>U</i> en W/	(m² · K)
W/(m⋅K)	12	14	16	18	20	12	14	16	18	20
0.050	0.32	0.29	0.26	0.24	0.22	0.29	0.26	0.24	0.22	0.21
0.045	0.30	0.27	0.24	0.23	0.21	0.27	0.24	0.22	0.21	0.19
0.040	0.27	0.25	0.23	0.21	0.19	0.25	0.22	0.21	0.19	0.18
0.035	0.25	0.23	0.21	0.19	0.18	0.22	0.21	0.19	0.18	0.16
0.030	0.23	0.21	0.19	0.17	0.16	0.20	0.19	0.17	0.16	0.15
0.025	0.20	0.18	0.17	0.16	0.14	0.18	0.17	0.15	0.14	0.13
0.020	0.18	0.16	0.15	0.14	0.13	0.16	0.15	0.13	0.12	0.12

Epaisseur d'isolation fixe de 4 cm

Epaisseur d'isolation fixe de 6 cm

Di 3

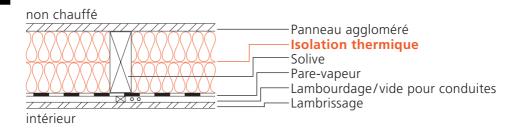


$\overline{\lambda}$	Epaisse	eur d'isola	ation, en	cm (que la	couche d	l'épaisseu	ır variable)	Valeu	r <i>U</i> en W/	(m ² ·K)
W/(m·K)	12	14	16	18	20	12	14	16	18	20
0.050	0.26	0.24	0.22	0.21	0.19	0.24	0.22	0.21	0.19	0.18
0.045	0.24	0.22	0.21	0.19	0.18	0.22	0.20	0.19	0.18	0.17
0.040	0.22	0.20	0.19	0.18	0.17	0.20	0.19	0.18	0.16	0.15
0.035	0.20	0.19	0.17	0.16	0.15	0.19	0.17	0.16	0.15	0.14
0.030	0.18	0.17	0.16	0.15	0.14	0.17	0.16	0.15	0.14	0.13
0.025	0.16	0.15	0.14	0.13	0.12	0.15	0.14	0.13	0.12	0.11
0.020	0.14	0.13	0.12	0.11	0.11	0.13	0.12	0.11	0.11	0.10

Epaisseur d'isolation fixe de 8 cm

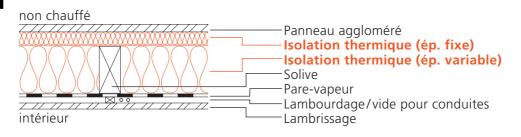
Epaisseur d'isolation fixe de 10 cm

Di 4



$\overline{\lambda}$	Epaisse	eur d'isola	Valeu	Valeur <i>U</i> en W/(m ² ⋅K)						
W/(m·K)	14	16	18	20	22	24	26	28	30	32
0.050	0.34	0.30	0.28	0.25	0.23	0.21	0.20	0.19	0.17	0.16
0.045	0.32	0.28	0.26	0.23	0.21	0.20	0.18	0.17	0.16	0.15
0.040	0.29	0.26	0.24	0.21	0.20	0.18	0.17	0.16	0.15	0.14
0.035	0.27	0.24	0.21	0.20	0.18	0.17	0.15	0.14	0.13	0.13
0.030	0.24	0.21	0.19	0.18	0.16	0.15	0.14	0.13	0.12	0.11
0.025	0.21	0.19	0.17	0.16	0.14	0.13	0.12	0.11	0.11	0.10
0.020	0.19	0.17	0.15	0.14	0.12	0.11	0.11	0.10	0.09	0.09

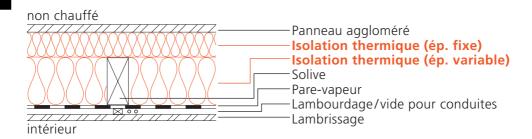
Dalles contre des locaux non chauffés


Compléments à l'édition de 1989

Di 8

λ W/(m⋅K)	Epaisse	eur d'isola	Valeur <i>U</i> en W/(m²⋅K)							
	12	14	16	18	20	22	24	26	28	30
0.050	0.38	0.34	0.31	0.28	0.26	0.24	0.22	0.20	0.19	0.18
0.045	0.36	0.32	0.29	0.26	0.24	0.22	0.20	0.19	0.18	0.17
0.040	0.34	0.30	0.27	0.24	0.22	0.21	0.19	0.18	0.17	0.16
0.035	0.31	0.28	0.25	0.23	0.21	0.19	0.18	0.16	0.15	0.14
0.030	0.29	0.25	0.23	0.21	0.19	0.17	0.16	0.15	0.14	0.13
0.025	0.26	0.23	0.21	0.19	0.17	0.16	0.15	0.14	0.13	0.12
0.020	0.23	0.21	0.18	0.17	0.15	0.14	0.13	0.12	0.11	0.11

Di 9



$\overline{\lambda}$	Epaisse	ur d'isol	ation, en	cm (que la	couche c	l'épaisseu	ır variable)	e) Valeur <i>U</i> en W/(m ² · K)			
W/(m·K)	12	14	16	18	20	12	14	16	18	20	
0.050	0.31	0.28	0.25	0.24	0.22	0.28	0.25	0.23	0.22	0.20	
0.045	0.29	0.26	0.24	0.22	0.20	0.26	0.24	0.22	0.20	0.19	
0.040	0.27	0.24	0.22	0.20	0.19	0.24	0.22	0.20	0.19	0.17	
0.035	0.24	0.22	0.20	0.19	0.17	0.22	0.20	0.18	0.17	0.16	
0.030	0.22	0.20	0.18	0.17	0.16	0.20	0.18	0.17	0.16	0.15	
0.025	0.20	0.18	0.17	0.15	0.14	0.18	0.16	0.15	0.14	0.13	
0.020	0.18	0.16	0.15	0.13	0.12	0.16	0.14	0.13	0.12	0.11	

Epaisseur d'isolation fixe de 4 cm

Epaisseur d'isolation fixe de 6 cm

Di 10

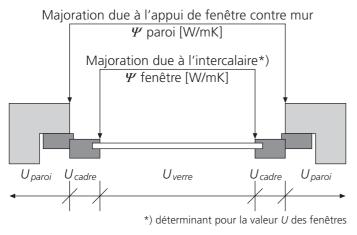
$\overline{\lambda}$	Epaisse	eur d'isola	ation, en o	cm (que la	couche c	l'épaisseu	ır variable)	Valeur <i>U</i> en W/(m²⋅K)			
W/(m⋅K)	12	14	16	18	20	12	14	16	18	20	
0.050	0.25	0.23	0.22	0.20	0.19	0.23	0.21	0.20	0.19	0.18	
0.045	0.23	0.22	0.20	0.19	0.18	0.22	0.20	0.19	0.18	0.16	
0.040	0.22	0.20	0.19	0.17	0.16	0.20	0.18	0.17	0.16	0.15	
0.035	0.20	0.18	0.17	0.16	0.15	0.18	0.17	0.16	0.15	0.14	
0.030	0.18	0.17	0.15	0.14	0.13	0.16	0.15	0.14	0.13	0.13	
0.025	0.16	0.15	0.14	0.13	0.12	0.15	0.14	0.13	0.12	0.11	
0.020	0.14	0.13	0.12	0.11	0.11	0.13	0.12	0.11	0.10	0.10	

Epaisseur d'isolation fixe de 8 cm

Epaisseur d'isolation fixe de 10 cm

5 Fenêtres et portes

La fenêtre est l'élément de construction qui a le plus évolué du point de vue énergétique durant les dix à quinze dernières années. Ce chapitre montre comment en calculer la valeur U. Le tableau aidera à déterminer la valeur U des fenêtres pour différentes parts du cadre. Ce chapitre est complété par un tableau de la valeur U de quelques types de portes.


Ces données remplacent celles de la Fiche technique existante «Valeurs k et valeurs g des fenêtres» de 1995. Le marché propose un vaste choix de vitrages, de types et de matériaux de cadres, ainsi que d'intercalaires. Pour autant qu'aucune donnée détaillée du produit n'existe, il faut utiliser les valeurs maximales correspondantes. Une note dans le tableau pour déterminer la valeur U le rappelle.

5.1	Fenêtres	66
5.1.1	Bases pour le calcul de la valeur <i>U</i>	
	des fenêtres Uw	66
5.1.2	Valeur <i>U</i> des cadres <i>U_f</i>	66
5.1.3	Intercalaires	66
5.1.4	Valeur g des fenêtres	66
5.1.5	Tableau pour déterminer la valeur <i>U</i>	
	des fenêtres	67
5.1.6	Choix de la fenêtre	67
5.1.7	Indications complémentaires	67
	Exemples	
5.2	Portes	69

Une fenêtre constitue une construction inhomogène présentant différentes propriétés d'isolation thermique. Les cadres et les surfaces vitrées, dont le comportement vis-àvis du flux thermique est principalement unidirectionnel, interviennent dans le calcul en fonction de leurs valeurs U et de leurs surfaces respectives; l'intercalaire est pris en compte par une majoration périmétrique.

5.1.1 Bases pour le calcul de la valeur U des fenêtres U_W

On prend les mesures nettes (vide de taille) d'une fenêtre pour le calcul de sa valeur *U*.

Fig. 10 Les zones de la fenêtre

On calcule la valeur U d'une fenêtre, notée U_w de la façon suivante:

$$U_W = \frac{U_f \cdot A_f + U_g \cdot A_g + \Psi_g \cdot I_g}{A_W} \text{ W/(m2 \cdot K)}$$

 U_f Valeur U du cadre, en W/(m² · K)

 A_f Surface de projection du cadre, en m²

 U_q Valeur U du vitrage, en W/(m² · K)

 A_g Surface de projection du vitrage, en m²

 Ψ_g Coefficient de transmission thermique linéique de l'intercalaire (par rapport au vide de lumière du vitrage), en W/(m·K)

l_a Longueur périmétrique des intercalaires, en m

Aw Surface de projection de la fenêtre, en m²

5.1.2 Valeur U des cadres U_f

Dans la pratique, les valeurs U_f sont très étendues. S'il manque des données contrôlées, on prendra les valeurs suivantes:

Bois / bois-métal	$U_f = 1.9 \text{ W/(m}^2 \cdot \text{K)}$
Matière synthétique	$U_f = 2.5 \text{ W/(m}^2 \cdot \text{K)}$
Profilés métalliques isolés	$U_f = 3.3 \text{ W/(m}^2 \cdot \text{K)}$

5.1.3 Intercalaires

Pour des intercalaires en aluminium, on peut introduire dans le calcul les valeurs Ψ_q suivantes:

Verre	valeur <i>U</i> veri	re $arPsi_g$ en W	//(m • K)
	W/(m²⋅K)	$U_f \le 2.1 \text{ W/(m}^2 \cdot \text{K)}$	$U_f > 2.1 \text{ W/(m}^2 \cdot \text{K)}$
VI double	< 1.4	0.07	0.11
	1.4 – 1.9	0.06	0.09
	1.9 – 2.5	0.05	0.08
VI triple	< 0.9	0.07	0.10
	0.9 – 1.4	0.06	0.09
	1.4 – 1.9	0.05	0.08
	> 1.9	0.04	0.06

Tableau 4:

Valeurs Ψ_g pour intercalaire en aluminium (valeurs indicatives)

Les valeurs Ψ_g dépendent aussi bien des valeurs U des verres que de celles des cadres. Les valeurs Ψ_g des intercalaires en acier inox ou en matière synthétique / Butyle peuvent être tirées de la Documentation SIA D0170.

5.1.4 Valeur *g* des fenêtres

La valeur *g* est déterminante pour évaluer un vitrage du point de vue de sa transmission énergétique totale face à l'énergie incidente. Des protections solaires extérieures réduisent massivement le facteur de transmission énergétique total.

Le marché propose une palette de produits dont les valeurs g sont très variées (p. ex. selon CSFF/SZFF doc. 31.03, pour VI triple-IR, la valeur g est 45–55%, suivant la disposition des verres). Si on ne dispose pas d'informations sur le produit, on utilisera les valeurs g suivantes:

VI double-IR (verre thermo-isolant)	<i>g</i> = 62%
VI triple-IR (verre thermo-isolant –	
2 couches réfléchissantes)	<i>g</i> = 45%

Tableau 5:

Valeurs q de fenêtres pour vitrage isolant

Les indications se basent sur les données tirées de CSFF/SZFF doc. 31.03 «Documentation — Protection thermique et protection contre le soleil des fenêtres et éléments de fenêtres» (édition 2000). Les valeurs g ont été adaptées par rapport à la Fiche technique «Valeurs k et valeurs k des fenêtres»

Si on utilise des vitrages de protection solaire, il faut prendre les valeurs g spécifiques au produit. De par leur rôle, ces vitrages ont des valeurs nettement inférieures à celles de vitrages isolants normaux.

On peut formuler la règle suivante:

Plus la valeur g est élevée, meilleure sont la transmission énergétique totale et les gains en énergie durant la période de chauffage.

		Vitrage 🛭	1	Un	, (fenêtre	e) en W	′(m² • K)	3
	Туре	U_g V	aleur g 💈	L	I _f (cadre)	en W/(m²⋅K) <mark>I</mark>	1
	V	$//(m^2 \cdot K)$	%	1.0	1.4	1.9	2.5	3.3
Part	VI double	1.5	62	1.5	1.7	1.8	2.1	2.3
du cadre:	VI double	1.3	62	1.4	1.6	1.7	2.0	2.3
	VI double	1.1	62	1.3	1.4	1.6	1.9	2.1
30%	VI double	1.0	62	1.2	1.3	1.5	1.8	2.0
	VI triple	1.1	45	1.3	1.4	1.5	1.8	2.0
	VI triple	0.9	45	1.1	1.2	1.4	1.7	1.9
	VI triple	0.7	45	1.0	1.1	1.3	1.6	1.8
	VI triple	0.5	45	0.9	1.0	1.1	1.4	1.7
Part	VI double	1.5	62	1.6	1.7	1.8	2.0	2.2
du cadre:	VI double	1.3	62	1.5	1.6	1.7	1.9	2.1
	VI double	1.1	62	1.3	1.4	1.5	1.8	1.9
20%	VI double	1.0	62	1.2	1.3	1.4	1.7	1.8
	VI triple	1.1	45	1.3	1.4	1.5	1.7	1.9
	VI triple	0.9	45	1.1	1.2	1.3	1.5	1.7
	VI triple	0.7	45	1.0	1.1	1.2	1.4	1.6
	VI triple	0.5	45	8.0	0.9	1.0	1.2	1.4
Part	VI double	1.5	62	1.6	1.6	1.7	1.8	2.0
du cadre:	VI double	1.3	62	1.4	1.5	1.5	1.7	1.8
	VI double	1.1	62	1.2	1.3	1.4	1.6	1.7
15%	VI double	1.0	62	1.2	1.2	1.3	1.5	1.6
	VI triple	1.1	45	1.2	1.3	1.4	1.5	1.6
	VI triple	0.9	45	1.0	1.1	1.2	1.3	1.5
	VI triple	0.7	45	0.9	1.0	1.0	1.2	1.3
	VI triple	0.5	45	0.7	0.8	0.9	1.0	1.1

- Pour le calcul des valeurs U, on part d'un taux de remplissage du gaz de 90%.
- Des valeurs g plus élevées doivent être justifiées. Tenir compte de la valeur g donnée dans les spécifications des produits. Pour les vitrages phoniques et ceux de protection solaire, on utilisera uniquement les données fournies par le fabricant.
- Si on ne connaît pas la part du cadre d'une fenêtre, on admettra pour la détermination des valeurs U_W une «part du cadre de 30%». Pour des valeurs U_g intermédiaires, on peut interpoler les valeurs U_W . Seules les valeurs qui répondent aux valeurs U_W maximales selon la Norme SIA 180 «Isolation thermique et protection contre l'humidité dans le bâtiment» sont citées.
- On trouvera d'autres valeurs Uf dans la Documentation SIA D0170 «L'énergie thermique dans le bâtiment».

5.1.6 Choix de la fenêtre

Tout en tenant compte des prescriptions cantonales on procédera de la façon suivante lors du choix d'une fenêtre du point de vue énergétique:

- 1. Choix d'une fenêtre avec une valeur U_w aussi basse que possible
- 2. Au sein du genre de verre choisi, on prendra un vitrage dont la valeur g est aussi élevée que possible. Si deux vitrages présentent la même valeur U_g , on préférera celui dont la valeur g est plus élevée.
- 3. Si la surface vitrée est importante et de plus orientée au sud, il est alors judicieux d'établir un bilan énergétique afin d'optimiser les pertes (valeur *U*) et les gains (valeur *a*).
- 4. Les propriétés d'isolation thermique d'une fenêtre peuvent être fortement influencées par des traverses ou autres croisillons traversants, une importante part du cadre, la longueur ou le matériau des intercalaires.

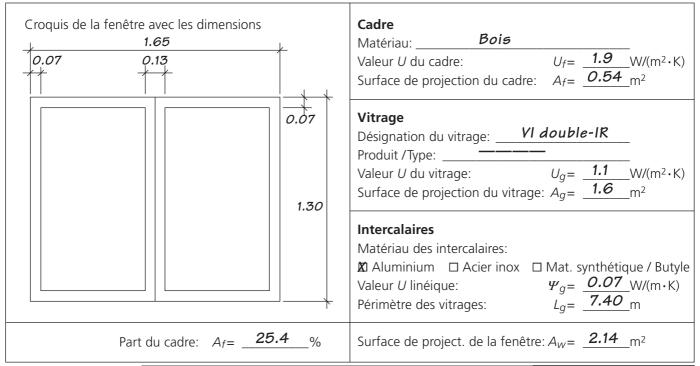
5.1.7 Indications complémentaires

- Les données des fabricants concernant les valeurs U_g et g doivent avoir été établies et déclarées en fonction de l'état de la technique.
- Si les données du fabricant concernant la valeur *g* font défaut, calculer les besoins de chaleur pour le chauffage sur la base des valeurs du vitrage correspondant tirées du tableau 5, page 64.
- Pour des calculs de simulation de bâtiments et ceux de charges frigorifiques, il faut disposer des valeurs détaillées spécifiques.
- Pour la protection thermique en été des bâtiments climatisés, le facteur de transmission énergétique total prescrit pour le vitrage, y compris la protection solaire, est de $g \le 15\%$. En règle générale, les vitrages isolants, les verres thermo-isolants, ainsi que les verres avec protection solaire, ne remplissent ces conditions qu'en combinaison avec une protection solaire extérieure.

68 <u>5.1.8 Exemples</u>

Les deux exemples suivants montrent comment déterminer la valeur U d'une fenêtre à l'aide des tableaux ou la calculer exactement. On a prévu des fenêtres avec cadre en bois munis de vitrage thermo-isolant double, dont la valeur U_q est 1.1 W/(m² · K).

Détermination de la valeur U d'une fenêtre U_w à l'aide du tableau


	,	Vitrage				<i>U</i> _w (fenêtre) en W/(m²⋅K)			
	Туре	<i>y</i>					/(m² • K)		
	W/	$(m^2 \cdot K)$	%	1.0	1.4	1.9	2.5	3.3	
Part	VI double	1.5	62	1.5	1.7	1.8	2.1	2.3	
du cadre:	VI double	1.3	62	1.4	1.6	1.7	2.0	2.3	
30%	VI double	1.1	62	1.3	1.4	1.6	1.9	2.1	

- Comme la part du cadre n'est pas donnée, on considère qu'elle est de 30%.
- Comme la valeur U_f du cadre en bois n'est pas donnée de manière détaillée, on prend une valeur U_f de 1.9 W/($m^2 \cdot K$).
- Comme il n'y a pas de données spécifiques concernant les intercalaires, on considère qu'ils sont en aluminium.

Calcul de la valeur U de la fenêtre U_w à l'aide du tableau Aw

Le procédé de calcul pour déterminer la valeur U d'une fenêtre est détaillé ci-dessous. Les données issues de ce chapitre, ainsi que le tableau Aw de l'annexe servent d'aide.

Le tableau Aw de l'annexe peut être reproduit pour ses propres calculs et remis à titre de justificatif aux autorités compétentes.

Tabl.
$$A_{W}$$
 $U_{W} = \frac{U_{f} \cdot A_{f} + U_{g} \cdot A_{g} + \Psi_{g} \cdot I_{g}}{A_{W}} = \frac{1.9 \cdot 0.54 + 1.1 \cdot 1.60 + 0.07 \cdot 7.40}{2.14}$ $U_{W} = \frac{1.54}{1.54} \text{W/(m}^{2} \cdot \text{K)}$

5.2 Portes 69

No. de	Construction	Valeur <i>U</i>
l'élément		$W/(m^2 \cdot K)$
Portes d'er	ntrée de maisons et d'apparteme	nts
T1	Panneau aggloméré 20 mm	1.1
	Couche thermo-isolante 30 mm	
	Doublage en lames 21 mm	
T2	Panneau aggloméré 22 mm	1.6
	Couche thermo-isolante 10 mm	
	Doublage en lames 21 mm	
T3	Sapin massif collé 40 mm	2.2
T4	Chêne massif collé 40 mm	2.8
T5	Panneau aggloméré 40 mm	2.5
	Deux faces avec revêtement alu	
T6	Tôle d'alu sur les deux faces	2.1
	Couche thermo-isolante 20 mm	
T7	Tôle d'alu sur les deux faces	1.3
	Couche thermo-isolante 40 mm	
T8	Placage, panneau aggloméré minc	e 1.6
	et tôle d'alu sur les deux faces	
	Panneau aggloméré 40 mm	
T9	Plaquage sur panneau aggloméré	fin 1.1
	et panneau aggloméré 16 mm	
	avec alu intercalé sur les deux face	S
	Couche thermo-isolante	
Portes inté	rieures	
T10	Porte assemblée, env. 36 mm	2.9
	avec panneaux à plate-bande	
T11	Porte à vide d'air 40 mm	2.0
T12	Porte pleine 40 mm	2.2

Les exemples relevés dans ce tableau représentent les constructions de portes les plus usuelles. Les spécifications exactes dépendent de chaque constructeur, les épaisseurs varient entre 40 et 80 mm. Les valeurs *U* données se réfèrent à des portes non vitrées. Pour les constructions spéciales, ainsi que pour les portes industrielles, on peut se servir des indications résultant de tests, données par les fabricants.

Annexes

	Transfert surfacique extérieur (h_e)		

Construction de l'élément (schéma, coupe)	Désignation de l'élément			$\begin{bmatrix} R \\ 1 \end{bmatrix}$
	NO de la couche Matériau de construction		$\frac{W/(m^2 \cdot K)}{\lambda}$	resp
	Transfert surfacique intérieur ((h _i)		
	Transfert surfacique extérieur ((h _e)		

Tabl. A $valeur U = \frac{1}{R_{total}} = W/(m^2 \cdot K)$

73

N ^o de	Indications relatives à l'isolant thermique				Valeur <i>U</i>
l'élément	Matériau	Produit	d m	λ W/(m⋅K)	en W/(m²•K)

Tabl. B

Croquis de la fenêtre avec les dimensions	Cadre Matériau: Valeur U du cadre: $U_f = $ $W/(m^2 \cdot K)$ Surface de projection du cadre: $A_f = $ m^2		
	VitrageDésignation du vitrage:		
	Intercalaires Matériau des intercalaires: □ Aluminium □ Acier inox □ Mat. synthétique / Butyle Valeur U linéique: Ψ_g =W/(m·K) Périmètre des vitrages: L_g =m		
Part du cadre: A_f =%	Surface de project. de la fenêtre: $A_W =m^2$		

Tabl. Aw

$U_W = \frac{U_f \cdot A_f + U_g \cdot A_g + \Psi_g \cdot I_g}{A_W} = U_W = U_$	=W/(m ² · K)
---	-------------------------

Croquis de la fenêtre avec les dimensions	Cadre Matériau: Valeur U du cadre: $U_f = $ W/($m^2 \cdot K$) Surface de projection du cadre: $A_f = $ m^2
	VitrageDésignation du vitrage:
	Intercalaires Matériau des intercalaires: \square Aluminium \square Acier inox \square Mat. synthétique / Butyle Valeur U linéique: $\Psi_g = $ W/(m·K) Périmètre des vitrages: $L_g = $ m
Part du cadre: A _f =%	Surface de project. de la fenêtre: $A_W =m^2$

Tabl. $A_{\mathbf{W}} = \frac{U_{f} \cdot \lambda}{V_{W}}$

1	$U_f \cdot A_f + U_g \cdot A_g + \Psi_g \cdot I_g$		// \\//(m ² •K)
<i>w</i> –	Aw	_	0W=VV/(III * IX)